2 resultados para Daily diary study
em Cochin University of Science
Resumo:
Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.
Resumo:
Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.