2 resultados para DOWNREGULATION
em Cochin University of Science
Resumo:
A crustinlike antimicrobial peptide from the haemocytes of giant tiger shrimp, Penaeus monodon was partially characterized at the molecular level and phylogenetic analysis was performed. The partial coding sequence of 299 bp and 91 deduced amino acid residues possessed conserved cysteine residues characteristic of the shrimp crustins. Phylogenetic tree and sequence comparison clearly confirmed divergence of this crustinlike AMP from other shrimp crustins. The differential expression of the crustinlike AMP in P. monodon in response to the administration of various immunostimulants viz., two marine yeasts (Candida haemulonii S27 and Candida sake S165) and two bglucan isolates (extracted from C. haemulonii S27 and C. sake S165) were noted during the study. Responses to the application of two grampositive probiotic bacteria (Bacillus MCCB101 and Micrococcus MCCB104) were also observed. The immune profile was recorded preand postchallenge white spot syndrome virus (WSSV) by semiquantitative RTPCR. Expressions of seven WSSV genes were also observed for studying the intensity of viral infection in the experimental animals. The crustinlike AMP was found to be constitutively expressed in the animal and a significant downregulation could be noted postchallenge WSSV. Remarkable downregulation of the gene was observed in the immunostimulant fed animals prechallenge followed by a significant upregulation postchallenge WSSV. Tissuewise expression of crustinlike AMP on administration of C. haemulonii and Bacillus showed maximum transcripts in gill and intestine. The marine yeast, C. haemulonii and the probiotic bacteria, Bacillus were found to enhance the production of crustinlike AMP and confer significant protection to P. monodon against WSSV infection
Resumo:
Shrimp cell lines are yet to be reported and this restricts the prospects of investigating the associated viral pathogens, especially white spot syndrome virus (WSSV). In this context, development of primary cell cultures from lymphoid organs was standardized. Poly-l-lysine-coated culture vessels enhanced growth of lymphoid cells, while the application of vertebrate growth factors did not, except insulin-like growth factor-1 (IGF-1). Susceptibility of the lymphoid cells to WSSV was confirmed by immunofluoresence assay using monoclonal antibody against the 28 kDa envelope protein of WSSV. Expression of viral and immunerelated genes in WSSV-infected lymphoid cultures could be demonstrated by RT-PCR. This emphasizes the utility of lymphoid primary cell culture as a platform for research in virus–cell interaction, virus morphogenesis, up and downregulation of shrimp immune-related genes, and also for the discovery of novel drugs to combat WSSV in shrimp culture