7 resultados para DNA technology
em Cochin University of Science
Resumo:
In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.
Resumo:
A solid-state laser based on a dye-doped deoxyribonucleic acid (DNA) matrix is described. A thin solid film of DNA has been fabricated by treating with polyvinyl alcohol (PVA) and used as a host for the laser dye Rhodamine 6G. The edge emitted spectrum clearly indicated the existence of laser modes and amplified spontaneous emission. Lasing was obtained by pumping with a frequency-doubled Nd:YAG laser at 532 nm. For a pump energy of 10 mJ/pulse, an intense line with FWHM ≈0.2 nm was observed at 566 nm due to selective mode excitation.
Resumo:
The adult mammalian liver is predominantly in a quiescent state with respect to cell division. This quiescent state changes dramatically, however, if the liver is injured by toxic, infectious or mechanic agents (Ponder, 1996). Partial hepatectomy (PH) which consists of surgical removal of two-thirds of the liver, has been used to stimulate hepatocyte proliferation (Higgins & Anderson 1931). This experimental model of liver regeneration has been the target of many studies to probe the mechanisms responsible for liver cell growth control (Michalopoulos, 1990; Taub, 1996). After PH most of the remaining cells in the renmant liver respond with co-ordinated waves of DNA synthesis and divide in a process called compensatory hyperplasia. Hence, liver regeneration is a model of relatively synchronous cell cycle progression in vivo. In contrast to hepatomas, cell division is terminated under some intrinsic control when the original cellular mass has been regained. This has made liver regeneration a useful model to dissect the biochemical and molecular mechanisms of cell division regulation. The liver is thus, one of the few adult organs that demonstrates a physiological growth rewonse (Fausto & Mead, 1989; Fausto & Webber, 1994). The regulation of liver cell proliferation involves circulating or intrahepatic factors that are involved in either the priming of hepatocytes to enter the cell cycle (Go to G1) or progression through the cell cycle. In order to understand the basis of liver regeneration it is mandatory to define the mechanisms which (a) trigger division, (b) allow the liver to concurrently grow and maintain dilferentiated fimction and (c) terminate cell proliferation once the liver has reached the appropriate mass. Studies on these aspects of liver regeneration will provide basic insight of cell growth and dilferentiation, liver diseases like viral hepatitis, toxic damage and liver transplant where regeneration of the liver is essential. In the present study, Go/G1/S transition of hepatocytes re-entering the cell cycle after PH was studied with special emphasis on the involvement of neurotransmitters, their receptors and second messenger function in the control of cell division during liver regeneration
Resumo:
The scope of the work was to synthesis few biologically active derivatives of curcumin. The derivatives were prepared by altering the keto-enol centre of curcumin by various reagents. This particular reaction centre for preparing derivative was selected keeping in mind the controversy regarding the major site responsible for antioxidant mechanism of curcumin. Most of the mechanistic study done earlier was by varying the constituents in one or both of the phenol ring present in the curcumin. The alterations at the keto-enol moiety may throw an insight into the role of the diketo moiety towards the antioxidant mechanism. Since recently curcumin has been suggested as a chemotherapeutic agent for various ailments, we also decided to check the DNA intercalating property of the derivatives synthesised.
Resumo:
Development of continuous cell lines from shrimp is essential to investigate viral pathogens. Unfortunately, there is no valid cell line developed from crustaceans in general and shrimps in particular to address this issue. Lack of information on the requirements of cells in vitro limits the success of developing a cell line, where the microenvironment of a cell culture, provided by the growthmedium, is of prime importance. Screening and optimization of growth medium components based on statistical experimental designs have been widely used for improving the efficacy of cell culture media. Accordingly, we applied Plackett–Burman design and response surface methodology to study multifactorial interactions between the growth factors in shrimp cell culture medium and to identify the most important ones for growth of lymphoid cell culture from Penaeus monodon. The statistical screening and optimization indicated that insulin like growth factor-I (IGF-I) and insulin like growth factor-II (IGF-II) at concentrations of 100 and 150 ng ml-1, respectively, could significantly influence the metabolic activity and DNA synthesis of the lymphoid cells. An increase of 53 % metabolic activity and 24.8 % DNA synthesis could be obtained, which suggested that IGF-I and IGFII had critical roles in metabolic activity and DNA synthesis of shrimp lymphoid cells
Resumo:
Pseudomonas aeruginosa MCCB 123 was grown in a synthetic medium for β-1,3 glucanase production. From the culture filtrate, β-1,3 glucanase was purified with a molecular mass of 45 kDa. The enzyme was a metallozyme as its β-1,3 glucanase activity got inhibited by the metal chelator EDTA. Optimum pH and temperature for β-1,3 glucanase activity on laminarin was found to be 7 and 50 °C respectively. The MCCB 123 β-1,3 glucanase was found to have good lytic action on a wide range of fungal isolates, and hence its application in fungal DNA extraction was evaluated. β-1,3 glucanase purified from the culture supernatant of P. aeruginosa MCCB 123 could be used for the extraction of fungal DNA without the addition of any other reagents generally used. Optimum pH and temperature of enzyme for fungal DNA extraction was found to be 7 and 65 °C respectively. This is the first report on β-1,3 glucanase employed in fungal DNA extraction
Resumo:
DNA sequence representation methods are used to denote a gene structure effectively and help in similarities/dissimilarities analysis of coding sequences. Many different kinds of representations have been proposed in the literature. They can be broadly classified into Numerical, Graphical, Geometrical and Hybrid representation methods. DNA structure and function analysis are made easy with graphical and geometrical representation methods since it gives visual representation of a DNA structure. In numerical method, numerical values are assigned to a sequence and digital signal processing methods are used to analyze the sequence. Hybrid approaches are also reported in the literature to analyze DNA sequences. This paper reviews the latest developments in DNA Sequence representation methods. We also present a taxonomy of various methods. A comparison of these methods where ever possible is also done