6 resultados para DIVERSIFICATION
em Cochin University of Science
Resumo:
The basic objective of the present study has been to observe the process and pattern of employment diversification among the rural women workers in Ernakulam district. The evidences are that the women workers in the rural areas of the state are being increasingly diversified into the tertiary sector. The clear cut evidence for the fact that in Kerala non-agricultural employment of rural women is increasing with more and more of them getting diversified into the tertiary sector. The women get more self esteem and recognition in terms of the work being done by them. In the urban areas of the state as a poverty eradicating measure the Kerala government has already introduced a new scheme under the banner of Kudumbasree. Another fact noticed in the study that the sectoral shift of women workers has posed a grave problem to the agricultural sector. The reluctance of workers to do manual jobs on land and the prevalence of high wages among the agricultural labours has left many a cultivable area fallow or has induced farmers to shift to less labour –intensive crops. The situation is expected to worsen in future as even the high wages fail to attract the young generation to this sector. To conclude the study has fulfilled all its objectives, viz; highlighting the rural employment structure in Kerala, examining the process, pattern, determinants and consequences of diversification among rural women workers in the sample villages. Being the first of its kind at the micro level in the state it contributes to the available literature in the area enriching the database that is crucially lacking for devising projects at the village and block-level. There exists ample scope for future research of similar nature in an urban background where the secondary data-sources are hinding towards a reversal of trends from non-agriculture to agriculture.
Resumo:
The unprecedented increase in competition as well as protectionism in world markets makes it imperative for a country like India to get much more energetically involved in the export business and make the dictum "export and flourish" a really true proposition, as against a somewhat passive "export and perish" approach followed during the last three and a half decades. At present, India needs to evolve new export strategies to cope with the changing international scenario and to ensure a steady improvement in the otherwise sagging export performance. A search for such strategic measures becomes all the more important in view of the all-out efforts of the government for expanding the country's exports to tide over the crippling balance of payment deficits and to generate necessary foreign exchange to meet the import requirements for accelerating the tempo of economic development. The present study is an endeavour in this direction. Taking engineering exports as an example, the study demonstrates alternative ways of understanding indepth export performance analysis and learning lessons for better performance in future
Resumo:
Marine product export does something pivotal in the fish export economy of Kerala. The post WTO period has witnessed a strengthening of food safety and quality standards applied on food products in the developed countries. In the case of the primary importers, like the EU, the US and Japan, market actions will have far reaching reverberations and implications for the marine product exports from developing nations. The article focuses on Kerala’s marine product exports that had been targeting the markets of the EU, the US and Japan, and the concomitant shift in markets owing to the stringent stipulations under the WTO regime. Despite the overwhelming importance of the EU in the marine product exports of the state, the pronounced influence of irregular components on the quantity and value of marine product exports to the EU in the post WTO period raises concern. However, the tendencies of market diversification validated by the forecast generated for the emerging markets of the SEA, the MEA and others, to an extent, allay the pressures on the marine product export sector of the state which had hitherto relied heavily on the markets of the EU, the US and Japan
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
The main purpose of the present study is to examine the growth and development problems of a new industry ,the chemical industry in the state of kerala. Problems of productivity and efficiency are studied with respect to the different branches of the industry such as fertilizers and insecticides basic inorganic and organic chemicals drugs and pharmaceuticals and miscellaneous chemicals. A study of partial input output linkages between the different chemical units is also attempted. The chemical industry is generally characterized by high linkage effects .These linkages could be used to generate subsidiary industries and thereby help in the growth and diversification of the industry. The efficiency of the working of individual units is also studied to understand the problems involved and to suggest remedial measures.
Resumo:
The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.