9 resultados para Cycles of Ideals
em Cochin University of Science
Resumo:
Chemically modified novel thermo-reversible zinc sulphonated ionomers based on natural rubber (NR), radiation induced styrene grafted natural rubber (RI-SGNR), and chemically induced styrene grafted natural rubber (CI-SGNR) were synthesized using acetyl sulphate/zinc acetate reagent system. Evidence for the attachment of sulphonate groups has been furnished by FTIR spectra. which was supplanted by FTNMR results. Estimation of the zinc sulphonate group was done using spectroscopic techniques such as XRFS and ICPAES. The TGA results prove improvement in the therrno-oxidative stability of the modified natural rubber. Both DSC and DMTA studies show that the incorporation of the ionic groups affect the thermal transition of the base polymer. Retention of the improved physical properties of the novel ionomers even after three repeated cycles of mastication and molding at 120 degree C may be considered as the evidence for the reprocessabiJity of the ionomer. Effect of both particulate (carbon black. silica & zinc stearate) and fibrous fillers (nylon & glass) on the properties of the radiation induced styrene grafted natural rubber ionomer has been evaluated. Incorporation of HAF carbon black results in maximum improvement in physical properties. Silica reinforces the backbone chain and weakens the ionic associations. Zinc stearate plays the dual role of reinforcement and ptasticization. The nylon and glass filled lonorner compounds show good improvement in the physical properties in comparison with the neat ionomer. Dispersion and adhesion of the fillers in the ionomer matrix has been amply supported by their SEM micrographs. Microwave probing of the electrical behavior of the 26.5 ZnSRISGNR ionomer reveals that the maximum relative complex conductivity and the complex permittivity appear at the frequency of 2.6 GHz. The complex conductivity of the base polymer increases from 1.8x 10.12 S/cm to 3.3xlO·4 S/cm. Influence of fillers on the dielectric constant and conductivity of the new ionic thermoplastic elastomer has been studied. The ionomer I nylon compound shows the highest microwave conductivity. Use of the 26.5 ZnS-RISGNR ionomer as a compatibilizer for obtaining the technologically compatible blends from the immiscible SBR/NBR system has been verified. The heat fugitive ionic cross-linked natural rubber may be, therefore, useful as an alternative to vulcanized rubber and thermoplastic elastomer
Resumo:
The average availability of a repairable system is the expected proportion of time that the system is operating in the interval [0, t]. The present article discusses the nonparametric estimation of the average availability when (i) the data on 'n' complete cycles of system operation are available, (ii) the data are subject to right censorship, and (iii) the process is observed upto a specified time 'T'. In each case, a nonparametric confidence interval for the average availability is also constructed. Simulations are conducted to assess the performance of the estimators.
Resumo:
Novel thermo-reversible zinc sulphonated ionomers based on styrene butadiene rubber (SBR), and high styrene rubber (HSH) were synthesized by sulphonation followed by neutralization with zinc. The sulphonate content of the ionomer was estimated by using x-ray fluorescence spectroscopy. Presence of sulphonate groups has been confirmed by FTIR and FTNMR spectra. The TGA results show improvement in the thermo~oxidative stability of the modified rubber. Both DSC and DMTA studies show that the incorporation of the ionic groups affect the glass rubber transition of the base polymer. lntroduction ol ionic functionality in to the base material improved the physical properties. Retention of the improved physical properties of the novel ionomers even after three repeated cycles of mixing and molding may be considered as the evidence for the reprocessability of the ionomer. Effect of particulate fillers (HAF black, silica and zinc stearate) on the properties of the zinc sulphonated styrene butadiene rubber ionomer has been evaluated. Incorporation of tillers results in improvement in mechanical properties. Zinc stearate plays the dual role of reinforcement and plasticization. The evaluation of dielectric properties of zinc sulphonated styrene butadiene rubber iorpmers at microwave frequencies reveal that the materials show conductivity at semiconductor level. The real and imaginary parts of the complex permittivity increases with increase in ionic functionality. Use of the 38.5 ZnS-SBR ionomer as a compatibiliser for obtaining the technologically compatible blends from the immiscible SBR/NBR system has been discussed.
Resumo:
This thesis entitled seasonal and interannual variability of sea level and associated surface meteorological parameters at cochin.The interesting aspect of studying sea level variability on different time scales can be attributed to the diversity of its applications.Study of tides could perhaps be the oldest branch of physical oceanography.The thesis is presented in seven chapters. The first chapter gives, apart from a general introduction, a survey of literature on sea level variability on different time scales - tidal, seasonal and interannual (geological scales excluded), with particular emphasis on the work carried out in the Indian waters. The second chapter is devoted to the study of observed tides at Cochin on seasonal and interannual time scales using hourly water level data for the period 1988-1993. The third chapter describes the long-term climatology of some important surface oceanographic and meteorological parameters (at Cochin) which are supposed to affect the sea level. The fourth chapter addresses the problem of seasonal forecasting of the meteorological and oceanographic parameters at Cochin using autoregressive, sinusoidal and exponentially weighted moving average techniques and testing their accuracy with the observed data for the period 1991-1993. The fifth chapter describes the seasonal cycles of sea level and the driving forces at 16 stations along the Indian subcontinent. It also addresses the observed interannual variability of sea level at 15 stations using available multi-annual data sets. The sixth chapter deals with the problem of coastal trapped waves between Cochin and Beypore off the Kerala coast using sea level and atmospheric pressure data sets for the year 1977. The seventh and the last chapter contains the summary and conclusions and future outlook based on this study.
Resumo:
Environmental persistence, fate and interactive effects with living organisms - beneficial or toxic - of trace elements are directly related to the physico-chemical forms in which they occur. Knowledge on the association of trace metals with different environmental compartments in an aquatic system are, therefore, essential for monitoring the trace metal pollution as well as transport, fate and bio-geochemical cycles of trace metals. This thesis is a modest attempt in assessing the trace metal levels and their behaviour in the aquatic environment of Kuttanad, an aquatic system that is severely affected by man's intervention on natural processes, by seriously evaluating the levels of trace metals in dissolved and particulate phases and also in the different chemical fractions of the sediments.
Resumo:
The oscillations in the Atmospheric Boundary Layer (ABL) are important because the transport mechanism from the surface to the upper atmosphere is governed by the ABL characteristics. The study was carried out using wind and temperature data observed at surface, 925 hPa and 850 hPa levels over Cochin and the different frequencies embedded in the boundary layer parameters are identified by employing wavelet technique. Surface boundary layer characteristics over the monsoon region are closely linked to the upper layer monsoon features. In this perception it is important to study the various oscillations in the surface boundary layer and the layer above. It is found that the wind and temperature at different levels show oscillations in Quasi Biweekly Mode (QBM) and Intra Seasonal Oscillation (ISO) bands as observed in a typical monsoon system. Amplitude of the oscillation varies with height. The amplitude of the QBM periodicity is more in the surface levels but in the upper levels the amplitude of the ISO periodicity is more than that of the QBM. From this, it is obvious that the controlling mechanism of QBM band is surface parameters such as surface friction and that for ISO band is associated with the active-break cycles of monsoon system
Resumo:
A marine Pseudomonas sp BTMS-51, immobilized by Ca-alginate gel entrapment was used for the production of extracellular Lglutaminase under repeated batch process and continuous process employing a packed bed reactor (PBR). Immobilized cells could produce an average of 25 U/ml of enzyme over 20 cycles of repeated batch operation and did not show any decline in production upon reuse. The enzyme yield correlated well with the biomass content in the beads. Continuous production of the enzyme in PBR was studied at different substrate concentrations and dilution rates. In general, the volumetric productivity increased with increased dilution rate and substrate concentrations and the substrate conversion efficiency declined. The PBR operated under conditions giving maximal substrate conversion efficiency gave an average yield of 21.07 U/ml and an average productivity of 13.49 U/ml/h. The system could be operated for 120 h without any decline in productivity
Resumo:
Invertase was immobilised on microporous montmorillonite K-10 via adsorption and covalent binding. The immobilised enzymes were tested for sucrose hydrolysis activity in a batch reactor. Km for immobilised systems was greater than free enzyme. The immobilised forms could be reused for 15 continuous cycles without any loss in activity. After 25 cycles, 85% initial activity was retained. A study on leaching of enzymes showed that 100% enzyme was retained even after 15 cycles of reuse. Leaching increased with reaction temperature. Covalent binding resisted leaching even at temperatures of 70 °C.
Resumo:
High styrene rubber ionomers were prepared by sulfonating styrene–butadiene rubber of high styrene content (high styrene rubber) in 1,2-dichloroethane using acetyl sulfate reagent, followed by neutralization of the precursor acids using methanolic zinc acetate. The ionomers were characterized using X-ray fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), dynamic mechanical analysis (DMA), and also by the evaluation of mechanical properties. The FTIR studies of the ionomer reveal that the sulfonate groups are attached to the benzene ring. The NMR spectra give credence to this observation. Results of DMA show an ionic transition (Ti) in addition to glass–rubber transition (Tg). Incorporation of ionic groups results in improved mechanical properties as well as retention of properties after three cycles of processing