19 resultados para Correlation based analysis
em Cochin University of Science
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
Dept. of Statistics, CUSAT
Resumo:
Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.
Resumo:
Information and communication technologies are the tools that underpin the emerging “Knowledge Society”. Exchange of information or knowledge between people and through networks of people has always taken place. But the ICT has radically changed the magnitude of this exchange, and thus factors such as timeliness of information and information dissemination patterns have become more important than ever.Since information and knowledge are so vital for the all round human development, libraries and institutions that manage these resources are indeed invaluable. So, the Library and Information Centres have a key role in the acquisition, processing, preservation and dissemination of information and knowledge. ln the modern context, library is providing service based on different types of documents such as manuscripts, printed, digital, etc. At the same time, acquisition, access, process, service etc. of these resources have become complicated now than ever before. The lCT made instrumental to extend libraries beyond the physical walls of a building and providing assistance in navigating and analyzing tremendous amounts of knowledge with a variety of digital tools. Thus, modern libraries are increasingly being re-defined as places to get unrestricted access to information in many formats and from many sources.The research was conducted in the university libraries in Kerala State, India. lt was identified that even though the information resources are flooding world over and several technologies have emerged to manage the situation for providing effective services to its clientele, most of the university libraries in Kerala were unable to exploit these technologies at maximum level. Though the libraries have automated many of their functions, wide gap prevails between the possible services and provided services. There are many good examples world over in the application of lCTs in libraries for the maximization of services and many such libraries have adopted the principles of reengineering and re-defining as a management strategy. Hence this study was targeted to look into how effectively adopted the modern lCTs in our libraries for maximizing the efficiency of operations and services and whether the principles of re-engineering and- redefining can be applied towards this.Data‘ was collected from library users, viz; student as well as faculty users; library ,professionals and university librarians, using structured questionnaires. This has been .supplemented by-observation of working of the libraries, discussions and interviews with the different types of users and staff, review of literature, etc. Personal observation of the organization set up, management practices, functions, facilities, resources, utilization of information resources and facilities by the users, etc. of the university libraries in Kerala have been made. Statistical techniques like percentage, mean, weighted mean, standard deviation, correlation, trend analysis, etc. have been used to analyse data.All the libraries could exploit only a very few possibilities of modern lCTs and hence they could not achieve effective Universal Bibliographic Control and desired efficiency and effectiveness in services. Because of this, the users as well as professionals are dissatisfied. Functional effectiveness in acquisition, access and process of information resources in various formats, development and maintenance of OPAC and WebOPAC, digital document delivery to remote users, Web based clearing of library counter services and resources, development of full-text databases, digital libraries and institutional repositories, consortia based operations for e-journals and databases, user education and information literacy, professional development with stress on lCTs, network administration and website maintenance, marketing of information, etc. are major areas need special attention to improve the situation. Finance, knowledge level on ICTs among library staff, professional dynamism and leadership, vision and support of the administrators and policy makers, prevailing educational set up and social environment in the state, etc. are some of the major hurdles in reaping the maximum possibilities of lCTs by the university libraries in Kerala. The principles of Business Process Re-engineering are found suitable to effectively apply to re-structure and redefine the operations and service system of the libraries. Most of the conventional departments or divisions prevailing in the university libraries were functioning as watertight compartments and their existing management system was more rigid to adopt the principles of change management. Hence, a thorough re-structuring of the divisions was indicated. Consortia based activities and pooling and sharing of information resources was advocated to meet the varied needs of the users in the main campuses and off campuses of the universities, affiliated colleges and remote stations. A uniform staff policy similar to that prevailing in CSIR, DRDO, ISRO, etc. has been proposed by the study not only in the university libraries in kerala but for the entire country.Restructuring of Lis education,integrated and Planned development of school,college,research and public library systems,etc.were also justified for reaping maximum benefits of the modern ICTs.
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.
Resumo:
In this paper we address the problem of face detection and recognition of grey scale frontal view images. We propose a face recognition system based on probabilistic neural networks (PNN) architecture. The system is implemented using voronoi/ delaunay tessellations and template matching. Images are segmented successfully into homogeneous regions by virtue of voronoi diagram properties. Face verification is achieved using matching scores computed by correlating edge gradients of reference images. The advantage of classification using PNN models is its short training time. The correlation based template matching guarantees good classification results
Resumo:
n this paper we address the problem of face detection and recognition of grey scale frontal view images. We propose a face recognition system based on probabilistic neural networks (PNN) architecture. The system is implemented using voronoi/ delaunay tessellations and template matching. Images are segmented successfully into homogeneous regions by virtue of voronoi diagram properties. Face verification is achieved using matching scores computed by correlating edge gradients of reference images. The advantage of classification using PNN models is its short training time. The correlation based template matching guarantees good classification results.
Resumo:
A novel optical add-drop multiplexer (OADM) based on the Mach-Zelauler interferometer (MZI) and the fiber Bragg grating (FBG) is proposed for the first tittle to the authors ' knowledge. In the structure, the Mach-Zehnder interferometer acts as an optical switch. The principle of the OADM is analyzed in this paper. The OADM can add/drop one of the multi-input channels or pass the channel directly by adjusting the difference of the two arms of the interferometer. The channel isolation is more than 20 dB
Resumo:
The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66) with ethylene propylene diene (EPDM) rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg) of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
This work aims to study the variation in subduction zone geometry along and across the arc and the fault pattern within the subducting plate. Depth of penetration as well as the dip of the Benioff zone varies considerably along the arc which corresponds to the curvature of the fold- thrust belt which varies from concave to convex in different sectors of the arc. The entire arc is divided into 27 segments and depth sections thus prepared are utilized to investigate the average dip of the Benioff zone in the different parts of the entire arc, penetration depth of the subducting lithosphere, the subduction zone geometry underlying the trench, the arctrench gap, etc.The study also describes how different seismogenic sources are identified in the region, estimation of moment release rate and deformation pattern. The region is divided into broad seismogenic belts. Based on these previous studies and seismicity Pattern, we identified several broad distinct seismogenic belts/sources. These are l) the Outer arc region consisting of Andaman-Nicobar islands 2) the back-arc Andaman Sea 3)The Sumatran fault zone(SFZ)4)Java onshore region termed as Jave Fault Zone(JFZ)5)Sumatran fore arc silver plate consisting of Mentawai fault(MFZ)6) The offshore java fore arc region 7)The Sunda Strait region.As the Seismicity is variable,it is difficult to demarcate individual seismogenic sources.Hence, we employed a moving window method having a window length of 3—4° and with 50% overlapping starting from one end to the other. We succeeded in defining 4 sources each in the Andaman fore arc and Back arc region, 9 such sources (moving windows) in the Sumatran Fault zone (SFZ), 9 sources in the offshore SFZ region and 7 sources in the offshore Java region. Because of the low seismicity along JFZ, it is separated into three seismogenic sources namely West Java, Central Java and East Java. The Sunda strait is considered as a single seismogenic source.The deformation rates for each of the seismogenic zones have been computed. A detailed error analysis of velocity tensors using Monte—Carlo simulation method has been carried out in order to obtain uncertainties. The eigen values and the respective eigen vectors of the velocity tensor are computed to analyze the actual deformation pattem for different zones. The results obtained have been discussed in the light of regional tectonics, and their implications in terms of geodynamics have been enumerated.ln the light of recent major earthquakes (26th December 2004 and 28th March 2005 events) and the ongoing seismic activity, we have recalculated the variation in the crustal deformation rates prior and after these earthquakes in Andaman—Sumatra region including the data up to 2005 and the significant results has been presented.ln this chapter, the down going lithosphere along the subduction zone is modeled using the free air gravity data by taking into consideration the thickness of the crustal layer, the thickness of the subducting slab, sediment thickness, presence of volcanism, the proximity of the continental crust etc. Here a systematic and detailed gravity interpretation constrained by seismicity and seismic data in the Andaman arc and the Andaman Sea region in order to delineate the crustal structure and density heterogeneities a Io nagnd across the arc and its correlation with the seismogenic behaviour is presented.
Resumo:
In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting