7 resultados para Controlled conditions

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titania is a versatile metal oxide with multiple applications. Titania supported catalysts are reported to be much more active compared to conventional silica or alumina supported ones in some reactions. TiO2 (anatase) having high surface area, with better crystallinity and high onset temperature of rutilation can be prepared by thermal hydrolysis of titanyl sulfate solution under controlled conditions. Calcinations at 350oC for 6 hrs were necessary to crystallize anatase. Method of preparation and percentage of the loaded metal oxides have greater influence on surface area. Drastic decrease in surface area was observed upon rutilation. Rutilation started at different temperatures depending on the metal oxide and the method of preparation. TiO2 should be characterized with high surface area, phase purity and high onset temperature of rutilation.Which should be well above the optimum temperature of a designated reaction in which it is employed as a catalyst. Variation in physical properties, depending upon the method of preparation is greater in TiO2 supported catalysts. Methanation activity was found to be highly dependent on nickel concentration present on the surface of the pellets. The methanation activity is strongly influenced by support material. The rate and turn over frequency of methanation and toluene oxidation activity of these catalysts are also equally important from an industrial point of view.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis Entitled Application of Biofloc technology (BFT) In the Nursery Rearing and Farming of Giant Freshwater Prawn,Macrobrachium Rosenbergii(De Man). Aquaculture, rearing plants and animals under controlled conditions is growing with an annual growth rate of 8.3% in the period 1970-2008 (FAO, 2010). This trend of growth is essential for the supply of protein-rich food for ever increasing world population. But growth and development of aquaculture should be in sustainable manner, preferably without jeopardizing the aquatic environment.In the present study, the application of BFT in the nursery rearing and farming ofgiant freshwater prawn, M. rosenbergii, is attempted. The result of the study is organised into eight chapters. In the first chapter, the subject is adequately introduced. Various types of aquaculture practices followed, development and status of Indian aquaculture, present status of freshwater pravm culture, BF T and its use for the sustainable aquaculture systems, theory of BFT based aquaculture practices, hypothesis, objective and outline of the thesis are described. An extensive review of literature on studies carried out so far on biofloc based aquaculture are given in chapter 2. The third chapter deals with the application of BFT in the primary nursery phase of freshwater prawn. Several workers suggested the need for an intermediate nursery phase in the culture system of freshwater prawn for the successful production. Thirty day experiment was conducted to study the effect of BFT on the water quality, and animal welfare under the various stocking densities. The study concluded that stocking finfishes in biofloc-based monoculture system of freshwater prawns has the potential of increasing total yield. Prawns having a higher commercial value than finfishes besides ensuring economic sustainability. Results showed that prawn yield and survival was better in catla dominated tanks. Based on the results of the study, it is recommended to incorporate 25% rohu and 75% catla in the biofloc-based culture system of giant freshwater prawns. The results of the present study also recommend to stock relatively larger catla for biofloc-based culture system. Fish production was also higher in the 100% catla tank. When catla was added in higher percentages it should ensured that the hiding objects in the culture ponds shall be used in order to reduce the chance of cannibalism among prawns. rohu and catla equally have the ability to harvest the biofloc, catla consumes the planktonic contributes in the floc whereas rohu grazed on the bacterial consortium suspended in the water column. In Chapter 8, recommendations and future research perspectives in the field of biofloc based aquaculture is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the objectives of the current investigation was to evaluate the effectiveness of Spirodela polyrhiza to remove heavy metals and other contaminants from the water samples collected from wetland sites of Eloor and Kannamaly under controlled conditions .The results obtained from the current study suggest that the test material S. polyrrhiza should be used in the biomonitoring and phytoremediation of municipal, agricultural and industrial effluents because of their simplicity, sensitivity and cost-effectiveness. The study throws light on the potential of this plant which can be used as an assessment tool in two diverse wetland in Ernakulum district. The results show the usefulness of combining physicochemical analysis with bioassays as such approach ensures better understanding of the toxicity of chemical pollutants and their influence on plant health. The results shows the suitability of Spirodela plant for surface water quality assessment as all selected parameters showed consistency with respect to water samples collected over a 3-monitoring periods. Similarly the relationship between the change in exposure period (2, 4 and 8 days) with the parameters were also studied in detail. Spirodela are consistent test material as they are homogeneous plant material; due to predominantly vegetative reproduction. New fronds are formed by clonal propagation thus, producing a population of genetically homogeneous plants. The result is small variability between treated individuals. It has been observed that phytoremediation of water samples collected from Eloor and Kannamaly using the floating plant system is a predominant method which is economic to construct, requires little maintenance and eco friendly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations on the water relations and gas exchange of/tcacia aun'culiji_2rmis were carried out in natural and controlled environments. The experiments were performed in both seedlings and five year old trees. Different sets of experiments were conducted in Acacia plantations, at Kothachira, Palakkad District and in .seedlings, at KFRI campus nursery mainly during the summer months. Investigations were also extended to seedlings of A.mangium, Aaulacocarpa and /Lholocericea, which are also phyllodinous species with the intention of comparing their physiology with Acacia auriculifomus. Potted seedlings of four species of Acacia viz., A. auriculi/E)/7r:i.r, /I. aulacocarpa, A. holocericea and A. mangium were used for the study. Measurements of relative water content (RWC), water potential, photosynthetic rate, transpiration, stomatal conductance, water use efficiency etc. of phyllodes were measured diumally in plants subjected to three stress conditions namely, drought, salinity and flooding