2 resultados para Conceptual attribute
em Cochin University of Science
Resumo:
Learning disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 10% of children enrolled in schools. There is no cure for learning disabilities and they are lifelong. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Just as there are many different types of LDs, there are a variety of tests that may be done to pinpoint the problem The information gained from an evaluation is crucial for finding out how the parents and the school authorities can provide the best possible learning environment for child. This paper proposes a new approach in artificial neural network (ANN) for identifying LD in children at early stages so as to solve the problems faced by them and to get the benefits to the students, their parents and school authorities. In this study, we propose a closest fit algorithm data preprocessing with ANN classification to handle missing attribute values. This algorithm imputes the missing values in the preprocessing stage. Ignoring of missing attribute values is a common trend in all classifying algorithms. But, in this paper, we use an algorithm in a systematic approach for classification, which gives a satisfactory result in the prediction of LD. It acts as a tool for predicting the LD accurately, and good information of the child is made available to the concerned
Resumo:
When simulation modeling is used for performance improvement studies of complex systems such as transport terminals, domain specific conceptual modeling constructs could be used by modelers to create structured models. A two stage procedure which includes identification of the problem characteristics/cluster - ‘knowledge acquisition’ and identification of standard models for the problem cluster – ‘model abstraction’ was found to be effective in creating structured models when applied to certain logistic terminal systems. In this paper we discuss some methods and examples related the knowledge acquisition and model abstraction stages for the development of three different types of model categories of terminal systems