2 resultados para Components of the surface

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of vanadium-niobium oxide catalysts in which the vanadia content varies between 0.3 and 18mol%was prepared by coprecipitation. These catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and by catalytic testing in the oxidative dehydrogenation reaction of propane. The results of the surface analysis by XPS and LEIS are compared. It is concluded that the active site on the catalyst surface contains 2.0 ± 0.3 vanadium atoms on average. This can be understood byassuming the existenceof two or three different sites:isolated vanadium atoms, pairs of vanadium atoms, or ensembles of three vanadium atoms. At higher vanadium concentration more vanadium clusters with a higher activity are at the surface.LEIS revealed that as the vanadium concentration in the catalyst increases, vanadium replaces niobium at the surface. At vanadium concentrations above 8 mol%, new phases such as P-(Nb, V)20S which are less active because vanadium is present in isolated sites are formed, while the vanadium surface concentration shows a slight decrease

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.