22 resultados para Coefficient of Loss Aversion
em Cochin University of Science
Resumo:
The Setschenow parameter and thermodynamic parameters of transfer of 2- and 4- hydroxybenzoic acids from water to salt solutions have been reported. The data have been rationalised by considering the structure breaking effects of the ions of the salts, the localized hydrolysis model, the internal pressure theory and the theory of water structure due to Symons.
Resumo:
The microwave dielectric properties of ZnAl2O4 spinels were investigated and their properties were tailored by adding different mole fractions of Ti02. The samples were synthesized using the mixed oxide rout.e. The phase purity and crystal structure were identified using X-ray diffraction technique. The sintered specimens were characterized in the microwave frequency range (3-13 GHz). The ZnA12O4 ceramics exhibited interesting dielectric properties (dielectric constant (e,.) = 8.5, unloaded quality factor (Q.) = 4590 at 12.27 GHz and temperature coefficient of resonant frequency (Tf) = -79 ppm/°C). Addition of Ti02 into the spinel improved its properties and the Tf approached zero for 0.83ZnAl2O4- 0.17TiO2• This temperature compensated composition has excellent microwave dielectric properties (Cr _ 12.67, Q, = 9950 at 10.075 GHz) which can be exploited for microwave substrate applications
Resumo:
The present study was undertaken to evaluate the performance of Coir Vyavasaya Co-operative societies (CVCs) in Kerala. It was also intended to examine the extent of fulfillment of the objectives of Co-operativisation Scheme and the socio-economic betterment of worker members, Further the study was directed to find out the level of participation of members in the affairs of CVCs and to identify the major problems confronting the CVCs and the future prospects of the industry. The objectives of this study are to evaluate the performance of CVCs in Kerala with reference to the objectives of co-operativisation, socio-economic background of the worker members of the CVCs in the state, extent of members participation, major problems etc. Major findings of the study shows that 84% of CVCs surveyed were incurring losses, the long-term solvency position of the CVCS shows very pathetic situation, ration analysis shows and unhealthy state of affaires with respect to short-term solvency position and operating efficiency of all categories of CVS were found to be extremely poor. If CVCs are enabled to increase their quantity of production and there by the volume of business, their amount of loss can be reduced. If this is so, the societies can provide more days of employment to their work members, which will help them to earn more wages and thereby improve their economic and social conditions
Resumo:
Natural rubber/isora fibre composites were cured at various temperatures. The solvent swelling characteristics of natural rubber composites containing both untreated and alkali treated fibres were investigated in aromatic and aliphatic solvents like toluene, and n-hexane. The diffusion experiments were conducted by the sorption gravimetric method. The restrictions on elastomer swelling exerted by isora fibre as well as the anisotropy of swelling of the composite have been confirmed by this study. Composite cured at 100°C shows the lowest percentage swelling. The uptake of aromatic solvent is higher than that of aliphatic solvent for the composites cured at all temperatures. The effect of fibre loading on the swelling behaviour of the composite was also investigated in oils like petrol, diesel, lubricating oil etc. The % swelling index and swelling coefficient of the composite were found to decrease with increase in fibre loading. This is due to the increased hindrance exerted by the fibres at higher fibre loadings and also due to the good fibre-rubber interactions. Maximum uptake of solvent was observed with petrol followed by diesel and then lubricating oil. The presence of bonding agent in the composites restrict the swelling considerably due to the strong interfacial adhesion. At a fixed fibre loading, the alkali treated fibre composite showed lower percentage swelling compared to the untreated one.
Resumo:
Cast Ai-Si alloys are widely used in the automotive, aerospace and general engineering industries due to their excellent combination of properties such as good castability, low coefficient of thermal expansion, high strength-to-weight ratio and good corrosion resistance. The present investigation is on the influence of alloying additions on the structure and properties of Ai-7Si-0.3Mg alloy. The primary objective of this present investigation is to study these beneficial effects of calcium on the structure and properties of Ai-7Si-0.3Mg-xFe alloys. The second objective of this work is to study the effects of Mn,Be and Sr addition as Fe neutralizers and also to study the interaction of Mn,Be,Sr and Ca in Ai-7Si-0.3Mg-xFe alloys. In this study the duel beneficial effects of Ca viz;modification and Fe-neutralization, comparison of the effects of Ca and Sr with common Fe neutralizers. The casting have been characterized with respect to their microstructure, %porosity and electrical conductivity, solidification behaviour and mechanical properties. One of the interesting observations in the present work is that a low level of calcium reduces the porosity compared to the untreated alloy. However higher level of calcium addition lead to higher porosity in the casting. An empirical analysis carried out for comparing the results of the present work with those of the other researchers on the effect of increasing iron content on UTS and % elongation of Ai-Si-Mg and Ai-Si-Cu alloys has shown a linear and an inverse first order polynomial relationships respectively.
Resumo:
The (Ba1-x Srx) (Nd1/2, Nb1/2) O3 ceramics have been prepared by the conventional ceramic route for different values of x. Addition of a small amount of CeO2(1 wt%) as a sintering aid increased the density of the samples. The structure and microstructure of the sintered samples are studied by X-ray diffraction and SEM methods. The dielectric properties of the samples are measured in the microwave frequency region as a function of composition. The dielectric constant decreases as x increases. The coefficient of thermal variation of resonant frequency decreases as the Sr content increases and goes to the negative side. The dielectric properties of (Ba1-x Srx) (Nd1/2, Nb1/2) O3 are in the range suitable for application as dielectric resonators in microwave circuits
Resumo:
Ceramic dielectric resonators in the BaO-RE2O3-TiO2 (RE = rare earth) system have been prepared by the conventional solid state ceramic route. The dielectric properties have been tailored by substitution of different rare earth oxides and by bismuth oxide addition. The dielectric constants increased with Bi addition whereas the 0 decreased. The temperature coefficient of the resonant frequency improved with bismuth addition
Resumo:
A microwave dielectric ceramic resonator based on BaCe2Ti5O15 and Ba5Nb4O15 have been prepared by conventional solid state ceramic route. The dielectric resonators (DRs) have high dielectric constant 32 and 40 for BaCe2Ti5O15 and Ba5Nb4O15, respectively. The whispering gallery mode (WGM) technique was employed for the accurate determination of the dielectric properties in the microwave frequency range. The BaCe2Ti5O15 and Ba5Nb4O15 have quality factors (Q X F) of 30,600 and 53,000 respectively. The quality factor is found to depend on the azimuthal mode numbers. The temperature coefficient of resonant frequency (Tr) of BaCe2Ti5O15 and Ba5Nb4O15 have been measured accurately using different resonant modes and are + 41 and + 78 ppm/K, respectively
Resumo:
Microwave ceramic dielectric resonators (DRs) based on RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) have been prepared using the conventional solid -state ceramic route. The DR samples are characterized using XRD and SEM methods. The microwave dielectric properties are measured using resonant methods and a net work analyzer . The ceramics based on Ce, Pr, Nd, and Sin have dielectric constants in the range 32-54 and positive coefficient of thermal variation of resonant frequency (r,). The ceramics based on Gd, Tb, Dy, Y. and Yb have dielectric constants in the range 19-22 and negative Tf
Resumo:
Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene.
Resumo:
Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene
Resumo:
Mann–Kendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889–1918 (NP1), 1919–1948 (NP2), 1949–1978 (NP3) and 1979–2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June– September, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889–2008) mean annual rainfall of CNE India is 1,195.1 mm with a standard deviation of 134.1 mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6 mm/year for Jharkhand and 3.2 mm/day for CNE India. Since rice crop is the important kharif crop (May– October) in this region, the decreasing trend of rainfall during themonth of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During themonth of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November–March) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914– 2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during postmonsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4– 8 years peak periodicity band has been noticed during September over Western UP, and 30–34 years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.
Resumo:
Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.
Resumo:
Time-series measurements from a moored data buoy located in the Bay of Bengal captured signals of inertial oscillation forced by the September 1997 cyclone. The progressive vector diagram showed mean northeastward current with well-defined clockwise circulation. Spectral analysis exhibited inertial peak at 0.67 cpd with blue shift and high rotary coefficient of –0.99, which signifies strong circular inertial oscillation. The wind and SST also exhibited spectral peak at inertial band (0.69 cpd) with higher blue shift. The inertial amplitude of 148.8 cm/s corresponding to a wind stress of 0.99 N/m2 and spectral peak near the local inertial frequency (0.653 cpd) indicate that the transfer of momentum was high.