16 resultados para Code of Civil Procedure
em Cochin University of Science
Resumo:
This thesis is shows the result of the research work on the inherent Powers of the High Court in criminal jurisdiction. The criminal justice system in India recognizes inherent powers only of the High Court. The Theory and Philosophy of inherent powers are concerned the Distinction between civil and Criminal laws are of very little consequence. In formulating the research programme the confusion created by the concept of inherent powers and its application by High Court form the central point. How fully the concept is understood, how correctly the power is used, and how far it has enhanced the rationale of the administration of criminal justice, what is its importance and what are the solutions for the inherent power to earn a permanent status in the province of criminal jurisprudence are the themes of this study. The precipitation of new dimensions is the yardstick to acknowledge the inherent powers of the High Court and Supreme Court. It is of instant value in criminal justice system. This study concludes innovativeness provided by the inherent powers has helped the justice administration draw inspiration from the Constitution. A jurisprudence of inherent powers has developed with the weilding of inherent powers of the Supreme Court and the High Court. It is to unravel mystery of jurisprudence caused by the operation of the concept of inherent powers this research work gives emphasis. Its significance is all the more relevant when the power is exercised in the administration of criminal justice. Application or non application of inherent powers in a given case would tell upon the maturity and perfection of the standard of justice
Resumo:
Human rights are the basic rights of every individual against the state or any other public authority as a member of the human family irrespective of any other consideration. Thus every individual of the society has the inherent right to be treated with dignity in all situations including arrest and keeping in custody by the police. Rights of an individual in police custody are protected basically by the Indian Constitution and by various other laws like Code of Criminal Procedure, Evidence Act, Indian Penal Code and Protection of Human Rights Act. The term `custody' is defined neither in procedural nor in substantive laws. The word custody means protective care. The expression `police custody' as used in sec. 27 of Evidence Act does not necessarily mean formal arrest. In India with special reference to Kerala and evolution and development of the concept of human rights and various kinds of human rights violations in police custody in different stages of history. Human rights activists and various voluntary organisations reveals that there are so many factors contributing towards the causes of violations of human rights by police. Sociological causes like ambivalent outlook of the society with respect to the use of third degree methods by the police, economic causes like meager salary and inadequate living conditions, rampant corruption in police service, unnecessary political interference in the crime investigation, work load of police personnel without any time limit and periodic holidays, unnecessary pressure from superior police officers and the general public for speedy detection causing great mental strain to the investigating officers, defective system of recruitment and training, imperfect system of investigation and lack of public co-operation are some of the factors identified in the field survey towards the causes of violations of human rights in police custody.
Resumo:
Cryptosystem using linear codes was developed in 1978 by Mc-Eliece. Later in 1985 Niederreiter and others developed a modified version of cryptosystem using concepts of linear codes. But these systems were not used frequently because of its larger key size. In this study we were designing a cryptosystem using the concepts of algebraic geometric codes with smaller key size. Error detection and correction can be done efficiently by simple decoding methods using the cryptosystem developed. Approach: Algebraic geometric codes are codes, generated using curves. The cryptosystem use basic concepts of elliptic curves cryptography and generator matrix. Decrypted information takes the form of a repetition code. Due to this complexity of decoding procedure is reduced. Error detection and correction can be carried out efficiently by solving a simple system of linear equations, there by imposing the concepts of security along with error detection and correction. Results: Implementation of the algorithm is done on MATLAB and comparative analysis is also done on various parameters of the system. Attacks are common to all cryptosystems. But by securely choosing curve, field and representation of elements in field, we can overcome the attacks and a stable system can be generated. Conclusion: The algorithm defined here protects the information from an intruder and also from the error in communication channel by efficient error correction methods.
Resumo:
Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.
Resumo:
Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.
Resumo:
This study deals the professional Services civil Liability for deficiency with special reference to medical professionals.the study deals with the characteristics of profession,basis of liability , historical evolution of legal controls on professional services, liability of doctors for negligence under tort law. Expectations to liability for medical negligence are critically evaluated. consent of medical treatment etc are studied
Resumo:
The constructional activities in the coastal belt of our country often demand deep foundations because of the poor engineering properties and the related problems arising from weak soil at shallow depths.The soil profile in coastal area often consists of very loose sandy soils extending to a depth of 3 to 4 m from the ground level underlain by clayey soils of medium consistency.The very low shearing resistance of the foundation bed causes local as well as punching shear failure.Hence structures built on these soils may suffer from excessive settlements.This type of soil profile is very common in coastal areas of Kerala,especially in Cochin. Further,the high water table and limited depth of the top sandy layer in these areas restrict the depth of foundation thereby further reducing the safe bearing capacity.
Resumo:
A simple, effective and inexpensive fiber optic sensor for investigating the setting characteristics of various grades of cement is described. A finite length of unsheathed multimode optical fiber laid inside the cement mix, is subjected to stress during the setting process. The microbends created on the fiber due to this stress directly influence the intensity of light propagating through the fiber. Continuous monitoring of such variations in the light output transmitted through the fiber gives a clear measure of the setting characteristics of the cement mix, thus providing a simple and elegant technique of great practical importance in the field of civil engineering. The smart fiber optic sensor described above can be incorporated into a building during the construction process itself so that continuous monitoring of the deterioration process for the entire life time of the building can be carried out.
Resumo:
In many fields such as earth science biology, environment and electronics, the knowledge about elemental distributions and chemical speciation is important. The determination of metal levels especially the toxic ones both in the environment and in biological materials are increasingly demanded by the society.Ion selective sensors have become one of the most effective ad powerful means for analytical scientists for the trace level monitoring of metal ions. The wide range of applications ,low material requirements and simplicity of analytical procedure have not only brought ion-selective electrodes in to the lime light of analytical chemistry,but have promoted their use as tools for physiologists,medical researchers,biologists,geologists,environmental protection specialists etc.Potentiometric ion-selective sensors have been developed for the determination of lanthanide ions such as La3+,Nd3+,Pr3+,Sm3+, and Gd3+.The sensors fabricated include both PVC membrane sensor and chemically modified carbon paste sensor. A set of 10 sensors have been developed. The response parameters of all the sensors have been studied and the sensors were applied as an indicator electrode in the potentiometric titration and for the determination of metal ions in real samples.
Resumo:
The increasing tempo of construction activity the world over creates heavy pressure on existing land space. The quest for new and competent site often points to the needs for improving existing sites, which are otherwise deemed unsuitable for adopting conventional foundations. This is accomplished by ground improvement methods, which are employed to improve the quality of soil incompetent in their natural state. Among the construction activities, a well-connected road network is one of the basic infrastructure requirements, which play a vital role for the fast and comfortable movement of inter- regional traffic in countries like India.One of the innovative ground improvement techniques practised all over the world is the use of geosynthetics, which include geotextiles, geomembranes, geogrids, etc . They offer the advantages such as space saving, enviromnental sensitivity, material availability, technical superiority, higher cost savings, less construction time, etc . Because of its fundamental properties, such as tensile strength, filtering and water permeability, a geotextile inserted between the base material and sub grade can function as reinforcement, a filter medium, a separation layer and as a drainage medium. Though polymeric geotextiles are used in abundant quantities, the use of natural geotextiles (like coir, jute, etc.) has yet to get momentum. This is primarily due to the lack of research work on natural geotextilcs for ground improvement, particularly in the areas of un paved roads. Coir geotextiles are best suited for low cost applications because of its availability at low prices compared to its synthetic counterparts. The proper utilisation of coir geotextilcs in various applications demands large quantities of the product, which in turn can create a boom in the coir industry. The present study aims at exploring the possibilities of utilising coir geotextiles for unpaved roads and embankments.The properties of coir geotextiles used have been evaluated. The properties studied include mass per unit area, puncture resistance, tensile strength, secant modulus, etc . The interfacial friction between soils and three types of coir geotextiles used was also evaluated. It was found that though the parameters evaluated for coir geotextiles have low values compared to polymeric geotextiles, the former are sufficient for use in unpaved roads and embankments. The frictional characteristics of coir geotextile - soil interfaces are extremely good and satisfy the condition set by the International Geosynthetic Society for varied applications.The performance of coir geotextiles reinforced subgrade was studied by conducting California Bearing Ratio (CBR) tests. Studies were made with coir geotextiles placed at different levels and also in multiple layers. The results have shown that the coir geotextile enhances the subgrade strength. A regression analysis was perfonned and a mathematical model was developed to predict the CBR of the coir geotextile reinforced subgrade soil as a function of the soil properties, coir geotextile properties, and placement depth of reinforcement.The effects of coir geotextiles on bearing capacity were studied by perfonning plate load tests in a test tan1e This helped to understand the functioning of geotextile as reinforcement in unpaved roads and embankments. The perfonnance of different types of coir geotextiles with respect to the placement depth in dry and saturated conditions was studied. The results revealed that the bearing capacity of coir-reinforced soil is increasing irrespective of the type of coir geotextiles and saturation condition.The rut behaviour of unreinforced and coir reinforced unpaved road sections were compared by conducting model static load tests in a test tank and also under repetitive loads in a wheel track test facility. The results showed that coir geotextiles could fulfill the functions as reinforcement and as a separator, both under static and repetitive loads. The rut depth was very much reduced whik placing coir geotextiles in between sub grade and sub base.In order to study the use of Coir geotextiles in improving the settlement characteristics, two types of prefabricated COlf geotextile vertical drains were developed and their time - settlement behaviour were studied. Three different dispositions were tried. It was found that the coir geotextile drains were very effective in reducing consolidation time due to radial drainage. The circular drains in triangular disposition gave maximum beneficial effect.In long run, the degradation of coir geotextile is expected, which results in a soil - fibre matrix. Hence, studies pertaining to strength and compressibility characteristics of soil - coir fibre composites were conducted. Experiments were done using coir fibres having different aspect ratios and in different proportions. The results revealed that the strength of the soil was increased by 150% to 200% when mixed with 2% of fibre having approximately 12mm length, at all compaction conditions. Also, the coefficient of consolidation increased and compression index decreased with the addition of coir fibre.Typical design charts were prepared for the design of coir geotextile reinforced unpaved roads. Some illustrative examples are also given. The results demonstrated that a considerable saving in subase / base thickness can he achieved with the use of eoir geotextiles, which in turn, would save large quantities of natural aggregates.
Resumo:
Shrimp Aquaculture has provided tremendous opportunity for the economic and social upliftment of rural communities in the coastal areas of our country Over a hundred thousand farmers, of whom about 90% belong to the small and marginal category, are engaged in shrimp farming. Penaeus monodon is the most predominant cultured species in India which is mainly exported to highly sophisticated, quality and safety conscious world markets. Food safety has been of concem to humankind since the dawn of history and the concern about food safety resulted in the evolution of a cost effective, food safety assurance method, the Hazard Analysis Critical Control Point (HACCP). Considering the major contribution of cultured Penaeus monodon to the total shrimp production and the economic losses encountered due to disease outbreak and also because traditional methods of quality control and end point inspection cannot guarantee the safety of our cultured seafood products, it is essential that science based preventive approaches like HACCP and Pre requisite Programmes (PRP) be implemented in our shrimp farming operations. PRP is considered as a support system which provides a solid foundation for HACCP. The safety of postlarvae (PL) supplied for brackish water shrimp farming has also become an issue of concern over the past few years. The quality and safety of hatchery produced seeds have been deteriorating and disease outbreaks have become very common in hatcheries. It is in this context that the necessity for following strict quarantine measures with standards and code of practices becomes significant. Though there were a lot of hue and cry on the need for extending the focus of seafood safety assurance from processing and exporting to the pre-harvest and hatchery rearing phases, an experimental move in this direction has been rare or nil. An integrated management system only can assure the effective control of the quality, hygiene and safety related issues. This study therefore aims at designing a safety and quality management system model for implementation in shrimp farming and hatchery operations by linking the concepts of HACCP and PRP.
Resumo:
This thesis Entitled Resource abundance and survival of indigenous ornamental fishes of central kerala with emphasis on handling and packing stress in puntius filamentosus (valenciennes).Kerala state is endowed with 41 west flowing and three east flowing rivers originating in the Western Ghats. These rivers and their vast network of tributaries and distributaries harbour rich and diversified fish fauna. Most of the freshwater fishes available in Kerala are highly appreciated as ornamental fishes in the national and international markets.Today the ornamental fish industry is one of the largest industries all over the world. The demand for ornamental fishes has been increasing steadily with the enlargement of the industry, such that the current demand for indigenous ornamental fishes have exceeded the supply. This has led to serious concern about the resources available in the country that can be utilised judiciously for the economic benefit of the state. With an aim to fill up the lacuna, a database of freshwater ornamental fishes of Kerala was created as part of the present study. Ornamental fishes destined for export marketing should thrive well in the aquarium conditions.The study reiterates fishes caught from different environmental conditions and feeding habits have a greater ability to adapt and acclimatise to an entirely new environment and food habits. Marketing studies based on the statistics available with Marine Products Export Development Authority show that these species are not being exported at the required level over the past 6 years, when compared to the availability in the water bodies of Kerala. Sustainable utilisation of these resources from the wild using modern management principles and code of conduct for responsible fishing are advisable until captive breeding technology is popularised.
Resumo:
Packaging is important not only in extending the shellife of fish and fishery products but also improving their marketability. In the recent years, significant development have taken place in the packaging industry. During the past decade in India, there is almost a packaging revolution with the availability of variety packaging materials, thus generating better packaging consciousness in other producer/manufacturing industries. But unfortunately, such realisation is not forthcoming in the fisheries sector and packaging techniques for local and export trade continues to be on traditional lines with their inherent drawbacks and limitations. Better packaging ensures improved quality and presentation of the products and ensures higher returns to the producer. Among several packaging materials used in fishery industry, ISI specifications had been formulated only for corrugated fibre board boxes for export of seafoods and froglegs. This standard was formulated before containersiation came into existance in the export of marine products. Before containerisation, the standards were stringent in view of the rough handling, transportation and storage. Two of the common defects reported in the master cartons exported from India are low mechanical strength and tendency to get wet. They are weakened by the deposits of moisture caused by temperature fluctuations during loading, unloading and other handling stages. It is necessary to rectify the above defects in packaging aquatic products and hence in the present study extensive investigations are carried out to find out the reasons for the damage of master cartons, to evolve code of practice for the packaging oi frozen shrimp for exports, development of alternative style of packaging for the shipping container, development of suitable consumer packaging materials for fish soup powder, cured dried mackeral, fish pickles in oil and frozen shrimp. For the development of suitable packaging materials, it is absolutely essential to know the properties of packaging materials, effect of different packaging materials on theirshelf life and their suitability for food contact applications.
Resumo:
The Union Territory of Pondicherry prior to its merger with the Indian Union was a French Colony. The erstwhile territory of Pondicherry along with its hamlets, namely, KARAIKKAL, MAHE and YANAM was administered by the French Regime. Before it was established by French in 1 6 74 A.D. it was part of Vijayanagara Empire. Prior to this, Pondicherry was a part of the Kingdom of Chola and Pallava Kings. During French Regime, the laws which were in force in France in relation to administration of civil and criminal justice were extended to the erstwhile Territory of Pondicherry. Thus while Pondicherry stood influenced by the Inquisitorial system since the beginning of the 18th century, the neighboring states forming part of the Indian Union since Independence came under the Influence of the British system, viz. accusatorial system. The territory of Pondicherry, for administrative reasons, came to be merged with the Indian Union in the early 60's. Following the merger, the Indian administration sought to extent its own laws from time to time replacing erstwhile French Laws, however, subject to certain savings. Thus the transitional period witnessed consequential changes in the administration of the territory, including the sphere of judicial system. Since I 963, the Union Territory of Pondicherry was brought under the spell of the Indian Legal System The people in Pondicherry ' thus have had the benefit of experiencing both the svstems. Their experiences will be of much help to those who undertake comparative studies in law. The plus and minus points of the respective systems help one to develop a detachment that helps independent evaluation of the svstents. The result of these studies could be relevant in revitalising our criminal systems.The present system is evaluated in the light of the past system. New dimensions are added by way' of an empirical study also.
Resumo:
This paper presents the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete. Models derived based on the regression analysis of 60 test data for various mechanical properties of steel fiber-reinforced concrete have been presented. The various strength properties studied are cube and cylinder compressive strength, split tensile strength, modulus of rupture and postcracking performance, modulus of elasticity, Poisson’s ratio, and strain corresponding to peak compressive stress. The variables considered are grade of concrete, namely, normal strength 35 MPa , moderately high strength 65 MPa , and high-strength concrete 85 MPa , and the volume fraction of the fiber Vf =0.0, 0.5, 1.0, and 1.5% . The strength of steel fiber-reinforced concrete predicted using the proposed models have been compared with the test data from the present study and with various other test data reported in the literature. The proposed model predicted the test data quite accurately. The study indicates that the fiber matrix interaction contributes significantly to enhancement of mechanical properties caused by the introduction of fibers, which is at variance with both existing models and formulations based on the law of mixtures