10 resultados para Clinical analysis

em Cochin University of Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article reports a new in vitro bile analysis based on the measurement of the dielectric properties at microwave frequencies. The measurements were made using rectangular cavity perturbation technique at the S-band of microwave frequency with the different samples of bile obtained from healthy persons as well as from patients. It is observed that an appreciable change in the dielectric properties of patient’s samples with the normal healthy samples and these measurements were in good agreement with clinical analysis. These results prove an alternative in-vitro method of detecting bile abnormalities based on the measurement of the dielectric properties of bile samples using microwaves without surgical procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article reports a new method of analyzing pericardial fluid based on the measurement of the dielectric properties at microwave frequencies. The microwave measurements were performed by rectangular cavity perturbation method in the S-band of microwave frequency with the pericardial fluid from healthy persons as well as from patients suffering from pericardial effusion. It is observed that a remarkable change in the dielectric properties of patient samples with the normal healthy samples and these measurements were in good agreement with clinical analysis. This measurement technique and the method of extraction of pericardial fluid are simple. These results give light to an alternative in-vitro method of diagnosing onset pericardial effusion abnormalities using microwaves without surgical procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an enormous demand for chemical sensors in many areas and disciplines including chemistry, biology, clinical analysis, environmental science. Chemical sensing refers to the continuous monitoring of the presence of chemical species and is a rapidly developing field of science and technology. They are analytical devices which transform chemical information generating from a reaction of the analyte into an measurable signal. Due to their high selectivity, sensitivity, fast response and low cost, electrochemical and fluorescent sensors have attracted great interest among the researchers in various fields. Development of four electrochemical sensors and three fluorescent sensors for food additives and neurotransmitters are presented in the thesis. Based on the excellent properties of multi walled carbon nanotube (MWCNT), poly (L-cysteine) and gold nanoparticles (AuNP) four voltammetric sensors were developed for various food additives like propyl gallate, allura red and sunset yellow. Nanosized fluorescent probes including gold nanoclusters (AuNCs) and CdS quantum dots (QDs) were used for the fluorescent sensing of butylated hydroxyanisole, dopamine and norepinephrine. A total of seven sensors including four electrochemical sensors and three fluorescence sensors have been developed for food additives and neurotransmitters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical sensors have growing interest in the determination of food additives, which are creating toxicity and may cause serious health concern, drugs and metal ions. A chemical sensor can be defined as a device that transforms chemical information, ranging from the concentration of a specific sample component to total composition analysis, into an analytically useful signal. The chemical information may be generated from a chemical reaction of the analyte or from a physical property of the system investigated. Two main steps involved in the functioning of a chemical sensor are recognition and transduction. Chemical sensors employ specific transduction techniques to yield analyte information. The most widely used techniques employed in chemical sensors are optical absorption, luminescence, redox potential etc. According to the operating principle of the transducer, chemical sensors may be classified as electrochemical sensors, optical sensors, mass sensitive sensors, heat sensitive sensors etc. Electrochemical sensors are devices that transform the effect of the electrochemical interaction between analyte and electrode into a useful signal. They are very widespread as they use simple instrumentation, very good sensitivity with wide linear concentration ranges, rapid analysis time and simultaneous determination of several analytes. These include voltammetric, potentiometric and amperometric sensors. Fluorescence sensing of chemical and biochemical analytes is an active area of research. Any phenomenon that results in a change of fluorescence intensity, anisotropy or lifetime can be used for sensing. The fluorophores are mixed with the analyte solution and excited at its corresponding wavelength. The change in fluorescence intensity (enhancement or quenching) is directly related to the concentration of the analyte. Fluorescence quenching refers to any process that decreases the fluorescence intensity of a sample. A variety of molecular rearrangements, energy transfer, ground-state complex formation and collisional quenching. Generally, fluorescence quenching can occur by two different mechanisms, dynamic quenching and static quenching. The thesis presents the development of voltammetric and fluorescent sensors for the analysis of pharmaceuticals, food additives metal ions. The developed sensors were successfully applied for the determination of analytes in real samples. Chemical sensors have multidisciplinary applications. The development and application of voltammetric and optical sensors continue to be an exciting and expanding area of research in analytical chemistry. The synthesis of biocompatible fluorophores and their use in clinical analysis, and the development of disposable sensors for clinical analysis is still a challenging task. The ability to make sensitive and selective measurements and the requirement of less expensive equipment make electrochemical and fluorescence based sensors attractive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions