17 resultados para Circular letters
em Cochin University of Science
Resumo:
A simple technique to improve the impedance bandwidth of a circular microstrip patch antenna using two sectorial slots is proposed. Using this design more than 5% impedance bandwidth is obtained. The added advantage of this new antenna is that it can be fed by a 50- microstrip line
Resumo:
The cutoff wavenumbers of higher order modes in circular eccentric guides are computed with the variational analysis combined with a conformal mapping. A conformal mapping is applied to the variational formulation, and the variational equation is solved by the finite-element method. Numerical results for TE and TM cutoff wavenumbers are presented for different distances between the centers and ratio of the radii. Comparisons with numerical results found in the literature validate the presented method
Resumo:
Development of a new compact circular-sided microstrip antenna is presented. This antenna offers considerable area re- TABLE 2. Variation of Resonant Frequencies duction compared to standard rectangular microstrip antenna designed for the same frequency. Typical antenna design and experimental results for circular polarization are also demonstrated. 77je antenna has a 3-dB axial ratio bandwidth of 1.5%
Resumo:
A simple technique to improve the impedance bandwidth of a circular microstrip patch antenna using two sectorial slots is proposed. Using this design more than 5% impedance bandwidth is obtained. The added advantage of this new antenna is that it can be fed by a 50 microstrip line.
Resumo:
A dual-port microstrip antenna with a crescent shaped patch with excellent isolation betwecn the ports has been reportcd [I]. Since circular-sided geometries are inore compact than rectangular oncs, thcy find morc applications in microstrip arrays. The crcscent shaped antenna geometry [ I ] provides greater area rcductioii compared to other circular sided patches for broadband operation [2]. In this Lctter, formulac for calculating thc TM, I and TMZI mode resonant frequencies of this microstrip antenna, obtained by modifying the equations of a standard circular patch [3] are presentcd. Thcorctical results are compared with experimental observations aid the validity of the computation is established.
Resumo:
A circular miqrostrip antenna with a modified structure is presented. By adjusting the feed location along the circumference of the patch it is possible to match the antenna with a C microstrip line of any impedance. The impedance bandwidth and radiation characteristics are unaffected by this structural V modification.
Resumo:
A new dual port microstrip antenna geometry for dual frequency operation is presented. The structure consists of the intersection of two circles of the same radius with their centres displaced by a small fraction of the wavelength . This antenna provides wide impedance bandwidth and excellent isolation between its ports. The gain of the antenna is comparable to that of a standard circular microstrip antenna operating at the same resonant frequency. A theoretical analysis for calculating the resonant frequencies of the two ports is also presented
Resumo:
A novel technique for obtaining dual-hand circular polarization (CP) radiation of a single-feed circular microstrip antenna in proposed and demonstrated. By embedding two pain of arc shaped slots of proper lengths close to the boundary of a circular patch, and protruding one of the arc-shaped slots with a narrow slit, the circular microstrip antenna can perform dual-hand CP radiation using a single probe feed. Details of the antenna design
Resumo:
A new method for enhancing the 2.1 VSWR impedance bandwidth of microstrip antennas is presented. Bandwidth enhancement is achieved by loading the microstrip antenna by a ceramic microwave dielectric resonator (DR). The validity of this technique has been established using rectangular and circular radiating geometries. This method improves the bandwidth of a rectangular microstrip antenna to more than 10% (= 5 times that of a conventional rectangular microstrip antenna) with an enhanced gain of I dB
Resumo:
A novel antenna configuration comprised of two circular micro strip antennas (CMAs) resonating in the TMtt and TM2, modes, producing radiation characteristics suitable for a mobile telephone handset, is presented. The antennas operating at the same frequency are placed back to back with a separation comparable to the thickness of a typical handset. The radiation pattern consists of a region of reduced radiation intensity, which minimizes the radiation hazards to the user
Resumo:
A compact microstrip antenna with circular polarization radiation is demonstrated.A reducation in the required parameters for achieving CP radiation makes the present antenna design simpler
Resumo:
A new compact dual-band, dual-polarized microstrip antenna is presented. 7'iris antenna resonates at two frequencies with different polarizations: a linearly polarized one for terrestrial communication, and a circularly polarized one for satellite mobile communication. This antenna also provides an area reduction of 70% compared to a standard rectangular patch antenna
Resumo:
Experimental and simulated results for a dual-port dual-polarized microstrip antenna are presented. The antenna excites two orthogonally polarized resonant frequencies providing an isolation of -30 dB between the ports. The patch geometry consists of two circular arcs of different radii with their centers displaced by a distance. This new design offers an area reduction of -70% coinpared to it standard rectangular microstrip antenna with a reduction in gain of 1.7 dB
Resumo:
compact microstrip antenna integrated with an amplifier having an area reduction of 70%, compared to the standard circular microstrip patch antenna, is presented. The antenna also provides an enhanced gain of 10-dB more than its passive counter part. The measured 2:1 VSWR band width is -4% at 790 MHz, which is 2.5 times larger than that of the passive microstrip antenna
Resumo:
Design of a compact dual frequency microstrip antenna is presented. The structure consists of a slotted circular patch with a dielectric superstrate. The superstrate,not only acts as a radome, but improves the bandwidth and lowers the resonant frequency also. The proposed design provides an overall size reduction of about 60% compared to an unslotted patch along with good efficiency,gain and bandwidth. The polarization planes at the two resonances are orthogonal and can be simultaneously excited using a coaxial feed. Parametric study of this configuration showed that the frequency ratio of the two resonances can be varied from 1.17 to 1.7 enabling its applications in the major wireless communication bands like AWS, DECT,PHS,Wi.Bro, ISM,and DMB. Design equations are also deduced for the proposed antenna and validated.