13 resultados para Choice of technique
em Cochin University of Science
Resumo:
The rapid developments in fields such as fibre optic communication engineering and integrated optical electronics have expanded the interest and have increased the expectations about guided wave optics, in which optical waveguides and optical fibres play a central role. The technology of guided wave photonics now plays a role in generating information (guided-wave sensors) and processing information (spectral analysis, analog-to-digital conversion and other optical communication schemes) in addition to its original application of transmitting information (fibre optic communication). Passive and active polymer devices have generated much research interest recently because of the versatility of the fabrication techniques and the potential applications in two important areas – short distant communication network and special functionality optical devices such as amplifiers, switches and sensors. Polymer optical waveguides and fibres are often designed to have large cores with 10-1000 micrometer diameter to facilitate easy connection and splicing. Large diameter polymer optical fibres being less fragile and vastly easier to work with than glass fibres, are attractive in sensing applications. Sensors using commercial plastic optical fibres are based on ideas already used in silica glass sensors, but exploiting the flexible and cost effective nature of the plastic optical fibre for harsh environments and throw-away sensors. In the field of Photonics, considerable attention is centering on the use of polymer waveguides and fibres, as they have a great potential to create all-optical devices. By attaching organic dyes to the polymer system we can incorporate a variety of optical functions. Organic dye doped polymer waveguides and fibres are potential candidates for solid state gain media. High power and high gain optical amplification in organic dye-doped polymer waveguide amplifier is possible due to extremely large emission cross sections of dyes. Also, an extensive choice of organic dye dopants is possible resulting in amplification covering a wide range in the visible region.
Resumo:
Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.
Resumo:
Cure characteristics of short polyester fiber-polyurethane composites with respect to different bonding agents (MD resins) based on 4, 4' diphenylmethanediisocyanate (MDI) and various diols like propyleneglycol (PG), polypropyleneglycol (PPG) and glycerol (GL) were studied. Tmax. - Tmin. of composites having MD resin were found to be higher than the composite without MD resin. Minimum torque and Tmax. - Tmin., scorch time and optimum cure time were increased with the increase of MDI equivalence. Optimum ratio of MDI / -of in the resin was found to be within the range of 1-1.5. It was observed from the cure characteristics that for getting better adhesion between short polyester fiber and the polyurethane matrix the best choice of MD resin was one based on MDI and 1:1 equivalent mixture of polypropyleneglycol and glycerol.
Resumo:
Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.
Resumo:
In the present work, studies on vulcanization, rheology and reinforcement of natural rubber latex with special reference to accelerator combinations, surface active agents and gamma irradiation have been undertaken. In vulcanization, the choice of vulcanization system, the extent and mc-zie of vulcanization and network structure of the vulcanizate are important factors contributing to the overall quality of the product. The vulcanization system may be conventional type using elemental sulfur or a system involving sulfur donors. The latter type is used mainly in the manufacture of heat resistant products. For improving the technical properties of the products such as modulus and tensile strength, different accelerator combinations are used. It is known that accelerators have a strong effect on the physical properties of rubber vulcanizates. A perusal of the literature indicates that fundamental studies on the above aspects of latex technology are very limited. Thereforea systematic study on vulcanization, rheology and reinforcement of natural rubber latex with reference to the effect of accelerator combinations, surface active agents and gamma irradiation has been undertaken. The preparation and evaluation of some products like latex thread was also undertaken as a part of the study. The thesis consists of six chapter
Resumo:
This paper presents the optimal design of a sur- face mounted permanent magnet Brushless DC mo- tor (PMBLDC) meant for spacecraft applications. The spacecraft applications requires the choice of a torques motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine con¯gurations viz Slotted PMBLDC and Slotless PMBLDC with halbach array are compared with the help of analytical and FE methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction
Resumo:
This paper presents the design and analysis of a 400-step hybrid stepper motor for spacecraft applications. The design of the hybrid stepper motor for achieving a specific performance requires the choice of appropriate tooth geometry. In this paper, a detailed account of the results of two-dimensional finite-element (FE) analysis conducted with different tooth shapes such as square and trapezoidal, is presented. The use of % more corresponding increase in detent torque and distorted static torque profile. For the requirements of maximum torque density, less-detent torque, and better positional accuracy and smooth static torque profile, different pitch slotting with equal tooth width has to be provided. From the various FE models subjected to analysis trapezoidal teeth configuration with unequal tooth pitch on the stator and rotor is found to be the best configuration and is selected for fabrication. The designed motor is fabricated and the experimental results is compared with the FE results
Resumo:
Globalization and liberalization, with the entry of many prominent foreign manufacturers, changed the automobile scenario in India, since early 1990‟s. Manufacturers such as Ford, General Motors, Honda, Toyota, Suzuki, Hyundai, Renault, Mitsubishi, Benz, BMW, Volkswagen and Nissan set up their manufacturing units in India in joint venture with their Indian counterpart companies, by making use of the Foreign Direct Investment policy of the Government of India, These manufacturers started capturing the hearts of Indian car customers with their choice of technological and innovative product features, with quality and reliability. With the multiplicity of choices available to the Indian passenger car buyers, it drastically changed the way the car purchase scenario in India and particularly in the State of Kerala. This transformed the automobile scene from a sellers‟ market to buyers‟ market. Car customers started developing their own personal preferences and purchasing patterns, which were hitherto unknown in the Indian automobile segment. The main purpose of this paper is to come up with the identification of possible parameters and a framework development, that influence the consumer purchase behaviour patterns of passenger car owners in the State of Kerala, so that further research could be done, based on the framework and the identified parameters
Resumo:
This paper presents the optimal design of a surface mounted permanent-magnet (PM) Brushless direct-current (BLDC) motor meant for spacecraft applications. The spacecraft applications requires the choice of a motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine configurations viz Slotted PMBLDC and Slotless PMBLDC with Halbach array are compared with the help of analytical and finite element (FE) methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with Halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction
Resumo:
Globalization and liberalization, with the entry of many prominent foreign manufacturers, changed the automobile scenario in India, since early 1990’s. World Leaders in automobile manufacturing such as Ford, General Motors, Honda, Toyota, Suzuki, Hyundai, Renault, Mitsubishi, Benz, BMW, Volkswagen and Nissan set up their manufacturing units in India in joint venture with their Indian counterpart companies, by making use of the Foreign Direct Investment policy of the Government of India, These manufacturers started capturing the hearts of Indian car customers with their choice of technological and innovative product features, with quality and reliability. With the multiplicity of choices available to the Indian passenger car buyers, it drastically changed the way the car purchase scenario in India and particularly in the State of Kerala. This transformed the automobile scene from a sellers’ market to buyers’ market. Car customers started developing their own personal preferences and purchasing patterns, which were hitherto unknown in the Indian automobile segment. The main purpose of this paper is to develop a model with major variables, which influence the consumer purchase behaviour of passenger car owners in the State of Kerala. Though there are innumerable studies conducted in other countries, there are very few thesis and research work conducted to study the consumer behaviour of the passenger car industry in India and specifically in the State of Kerala. The results of the research contribute to the practical knowledge base of the automobile industry, specifically to the passenger car segment. It has also a great contributory value addition to the manufacturers and dealers for customizing their marketing plans in the State
Resumo:
Globalization and liberalization, with the entry of many prominent foreign manufacturers, changed the automobile scenario in India, since early 1990’s. World Leaders in automobile manufacturing such as Ford, General Motors, Honda, Toyota, Suzuki, Hyundai, Renault, Mitsubishi, Benz, BMW, Volkswagen and Nissan set up their manufacturing units in India in joint venture with their Indian counterpart companies, by making use of the Foreign Direct Investment policy of the Government of India, These manufacturers started capturing the hearts of Indian car customers with their choice of technological and innovative product features, with quality and reliability. With the multiplicity of choices available to the Indian passenger car buyers, it drastically changed the way the car purchase scenario in India and particularly in the State of Kerala. This transformed the automobile scene from a sellers’ market to buyers’ market. Car customers started developing their own personal preferences and purchasing patterns, which were hitherto unknown in the Indian automobile segment. The main purpose of this paper is to come up with the identification of possible parameters and a framework development, that influence the consumer purchase behaviour patterns of passenger car owners in the State of Kerala, so that further research could be done, based on the framework and the identified parameters.
Resumo:
The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals
Resumo:
The ability of aroylhydrazones to bind with transition metals is a developing area of research interest and the coordinating properties of hydrazones can be tuned by the appropriate choice of parent aldehyde or ketone and the hydrazide. So in the present work we selected four different aroylhydrazones as principal ligands. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 3-picoline and pyridine leads to the syntheses of mixed ligand metal chelates which can cause different bonding modes, spectral properties and geometries in coordination compounds. The importance of aroylhydrazones and their complexes in various fields and their interesting coordinating properties stimulate our interest in the investigation of transition metal chelates with four different aroylhydrazones. The aroylhydrazones selected are 4-benzyloxy-2-hydroxybenzaldehyde-4-nitrobenzoylhydrazone dimethylformamide monosolvate, 5-bromo-2-hydroxy-3-methoxybenzaldehyde nicotinoylhydrazone dihydrate methanol monosolvate, 4-diethylamino-2- hydroxybenzaldehyde nicotinoylhydrazone monohydrate and 2-benzoylpyridine- 4-nitrobenzoylhydrazone. The selection of 4-benzyloxy-2-hydroxybenzaldehyde- 4-nitrobenzoylhydrazone was based on the idea of developing ligands having D-π-A general structure, so that the proligand and metal complexes exhibit NLO activity. Hence it is interesting to explore the coordinating capabilities of the synthesized hydrazones and to study the NLO activity of hydrazones and some of the metal complexes.