4 resultados para Chiral Symmetry
em Cochin University of Science
Resumo:
The toluene diisocyanate based optically active chiral polyurethanes were synthesized according to the symmetry conditions. The noncentrosymmetric (both charge asymmetry and spatial asymmetry) environment were attained by the incorporation of the chiral units (diethyl-(2R,3R)(þ)-tartrate) and donor-acceptor building blocks in the main chain which induce a helical conformation in the macromolecular chain. A series of optically active polyurethanes containing chiral linkages in the polymer back bone have been synthesized by using DBTDL catalyst by incorporating the amido diols which were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane, and diaminohexane respectively. The effect of incorporation of the chiral molecule diethyl-(2R,3R)(þ)-tartrate on the properties of polyurethanes was studied by changing the chromophores and also by varying the chiral-chromophore composition. Various properties of polyurethanes were investigated by UV, Fluorescence, TG/DTA, XRD, polarimetric techniques, Kurtz-Perry powder techniques, etc.
Resumo:
A new class of chiral polyurethanes containing amido linkages in the polymer backbone have been synthesized by reacting toluene diisocyanate with isosorbide (IS) chiral moiety and the chromophores [N,N0-ethane- 1,2-diyl bis(6-hydroxy hexanamide), N,N0-butane-1,4-diyl bis(6-hydroxy hexanamide) and N,N0-hexane-1,6-diyl bis (6-hydroxy hexanamide)]. The corresponding chromophores were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane and diaminohexane, respectively. All the polymers were synthesized according to the symmetry conditions so as to obtain the non-centrosymmetric environment. A series of polyurethanes were synthesized by varying the chiral– chromophore composition. The polyurethanes developed were characterized by optical and thermal methods.
Resumo:
Ultrasonic is a good tool to investigate the elastic properties of crystals. It enables one to determine all the elastic constants, Poisson’s ratios, volume compressibility and bulk modulus of crystals from velocity measurements. It also enables one to demonstrate the anisotropy of elastic properties by plotting sections of the surfaces of phase velocity, slowness, group velocity, Young’s modulus and linear compressibility along the a-b, b-c and a-c planes. They also help one to understand more about phonon amplification and help to interpret various phenomena associated with ultrasonic wave propagation, thermal conductivity, phonon transport etc. Study of nonlinear optical crystals is very important from an application point of view. Hundreds of new NLO materials are synthesized to meet the requirements for various applications. Inorganic, organic and organometallic or semiorganic classes of compounds have been studied for several reasons. Semiorganic compounds have some advantages over their inorganic and inorganic counterparts with regard to their mechanical properties. High damage resistance, high melting point, good transparency and non-hygroscopy are some of the basic requirements for a material to be suitable for device fabrication. New NLO materials are being synthesized and investigation of the mechanical and elastic properties of these crystals is very important to test the suitability of these materials for technological applications
Resumo:
The present work emphasizes the use of chirality as an efficient tool to synthesize new types of second order nonlinear materials. Second harmonic generation efficiency (SHG) is used as a measure of second order nonlinear response. Nonlinear optical properties of polymers have been studied theoretically and experimentally. Polymers were designed theoretically by ab initio and semiempirical calculations. All the polymeric systems have been synthesized by condensation polymerization. Second harmonic generation efficiency of the synthesized systems has been measured experimentally by Kurtz and Perry powder method