9 resultados para Chemical oxygen demand

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study conducted on the salinity intrusion and seasonal water quality variations in the tidal canals of cochin. The main objectives are, salinity intrusion profile, water quality variation of the surface water of the canals,hierarchical utility of the water bodies and to understand the non-conservative components in the water body. The parameters monitored werepH,temperature,alkalinity,conductivity,DO(dissolvedoxygen),COD(chemical oxygen demand),BOD(biochemical oxygen demand0,chloride, total hardness, calcium hardness, dissolved phosphate, nitrate, total iron, sulphate, turbidity, total coliform and SUVA at 254nm. The tidal canals of GCDA were found to be creeks extending to the interior, canals inter connecting parts of the estuary or canals with seasonally broken segments. Based on utility the canals could be classified as: canals heavely polluted and very saline,canals polluted by urban waste , canals having fresh water for most part of the year and not much polluted, fresh water bodies heavily polluted. During the rainy months carbon fixation by plankton is nonexistent,and during the dry months Chitrapuzha becomes a sink of phosphate. The study indicated abiotic subrouts for dissolved phosphate and revealed the potential pitfalls in LOICZ modeling exercise on sewage ladentidal canals. It was also found that all canals except for the canals of West cochin and chittoorpuzha have fresh water for some part of the year. The water quality index in the durable fresh water stretches was found to be of below average category.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the existing methods for the treatment of rubber latex centrifugation eflluent are not only unsatisfactory in their efliciency to effect near perfect treatment in bringing down the COD to optimum level, but also time consuming and need a large landspace. As the rate of effluent generation is extremely high (20 litres for kilogram of rubber) there is a need for development of efficient system,capable of rapid reduction of COD and BOD. Though the organic load of the rubber efiluent is very high, it does not contain much processed chemicals and therefore it can be considered as a ‘biological eflluent’. Further, the ratio of the Chemical Oxygen Demand to Biological Oxygen Demand (COD/BOD) of this effluent remain almost as a constant value. According to Montgomery (1967), estimation of BOD is not ideally suited for studies on process design, treatability, control of treatment plants, setting standards for treated effluents and assessing the effect of polluting discharges on the oxygen resources of receiving waters. Hence in the present study COD was measured to determine the impact of treatment system on the effluent. In the present study, attempts were made to evaluate the efficiencies of certain methods such as packed bed reactor using immobilized microbial cells, rotating biological contactor (RBC) and activated sludge process, for rapid and efficient treatment of natural rubber latex centrifugation effluent. In addition, studies were also carn'ed out to develop a suitable bioprocess for the coagulation of skim latex, as an alternative to the presently used acid coagulation process towards reducing the pollution load, besides recovering quality rubber

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water quality and primary productivity of Valanthakad backwater (9° 55 10. 24 N latitude and 76° 20 01. 23 E longitude) was monitored from June to November 2007. Significant spatial and temporal variations in temperature, transparency, salinity, pH, dissolved oxygen, sulphides, carbon dioxide, alkalinity, biochemical oxygen demand, phosphatephosphorus, nitrate-nitrogen, nitrite-nitrogen as well as primary productivity could be observed from the study. Transparency was low (53.75 cm to 159 cm) during the active monsoon months when the intensity of solar radiation was minimum, which together with the run off from the land resulted in turbid waters in the study sites. The salinity in both the stations was low (0.10 ‰ to 4.69 ‰) except in August and November 2007. The presence of total sulphide (0.08 mg/ l to 1.84 mg/ l) and higher carbon dioxide (3 mg/ l to 17 mg/ l) could be due to hospital discharges and decaying slaughter house wastes in Station 1 and also from the mangrove vegetation in Station 2. Nitrate-nitrogen and phosphate-phosphorus depicted higher values and pronounced variations in the monsoon season. Maximum net primary production was seen in November (0.87 gC/ m3/ day) and was reported nil in September. The chlorophyll pigments showed higher values in July, August and November with a negative correlation with phosphate-phosphorus and nitrite-nitrogen. The study indicated that the water quality and productivity of Valanthakad backwater is impacted and is the first report from the region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study is an attempt to understand some of the chemical oceanographic processes of the coastal water and the backwaters of Cochin. The importance of this study lies in the fact that there has been an increasing concern on the environmental degradation of Cochin backwaters with respect to water and sediments due to various anthropogenic activities. The study comprises the results and discussion of the hydro chemical parameters of coastal waters of Cochin during different seasons with statistical analysis. The parameters dealt with are salinity, temperature, pH, dissolved oxygen, nitrite-N, nitrate-N, ammonia-N, Silicate-Si, phosphate-P, chlorophyll ‘a’ and suspended solids, dissolved trace metals and sediment characteristics including sediment metals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metals present in the surface sediments have high demand on a global perspective, and the main reservoir of these elements is believed to be the ocean floor. A lot of studies on metals are going on throughout the world for its quantification and exploitation. Even though, some preliminary attempts have been made in selected areas for the quantitative study of metals in the western continental shelf of India, no comprehensive work has been reported so far. The importance of this study also lies on the fact that there has not been a proper evaluation of the impact of the Great Tsunami of 2004 on the coastal areas of the south India. In View of this, an attempt has been made to address the seasonal distribution, behavior and mechanisms which control the deposition of metals in the sediments of the western continental shelf and Cochin Estuary, an annex to this coastal marine region.Surface sediment samples were collected seasonally from two subenvironemnts of southwest coast of India, (continental shelf of Kerala and Cochin estuarine system), to estimate the seasonal distribution and geochemical behavior of non-transition, transition, rare-earth elements, Th and U. Bottom water samples were also taken from each station, and analysed for temperature, salinity and dissolved oxygen, hence the response of redox sensitive elements to oxygen minimum zone can be addressed. In addition, other sedimentary parameters such as sand, silt, clay fractions, CaCO3 and organic carbon content were also estimated to evaluate the control factors on level of metals present in the sediment. The study used different environmental data analysis techniques to evaluate the distribution and behavior of elements during different seasons. This includes environmental parameters such as elemental normalisation, enrichment factor, element excess, cerium and europium anomalies and authigenic uranium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work we report the preparation details studies on ZnO thin films. ZnO thin films are prepared using cost effective deposition technique viz., Chemical Spray Pyrolysis (CSP). The method is very effective for large area preparation of the ZnO thin film. A new post-deposition process could also be developed to avoid the adsorption of oxygen that usually occurs after the spraying process i.e., while cooling. Studies were done by changing the various deposition parameters for optimizing the properties of ZnO thin film. Moreover, different methods of doping using various elements are also tried to enhance the conductivity and transparency of the film to make these suitable for various optoelectronic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.