18 resultados para Characteristic frequencies
em Cochin University of Science
Resumo:
The research work has been in the area of compounding and characterization of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation materials, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general have been established with reference to more than one functional property. Ranges of passive materials, besides the active sensing material go into the construction of underwater electro acoustic transducers. Reliability of the transducer is critically dependent on these passive materials. Rubbers are a major class of passive materials. The present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent function specific requirements. There exists a large gap of information in the rubber technology of underwater rubbers, particularly relating to underwater electro acoustic transducers. This study is towards filling up the gaps of information in this crucial area. Water intake into rubber is considered as the single most important issue for the long-term performance of rubbers, especially Neoprene. In this study, the cause and effects of a range of parameters affecting the water absorption by diffusion and permeation have been investigated.
Resumo:
A dual-port microstrip antenna with a crescent shaped patch with excellent isolation betwecn the ports has been reportcd [I]. Since circular-sided geometries are inore compact than rectangular oncs, thcy find morc applications in microstrip arrays. The crcscent shaped antenna geometry [ I ] provides greater area rcductioii compared to other circular sided patches for broadband operation [2]. In this Lctter, formulac for calculating thc TM, I and TMZI mode resonant frequencies of this microstrip antenna, obtained by modifying the equations of a standard circular patch [3] are presentcd. Thcorctical results are compared with experimental observations aid the validity of the computation is established.
Resumo:
The arrow shaped microstrip antenna, which produces dual frequency dual polarisation operation with considera-ble size reduction compared to conventional patches has been reported [I]. These antennas provide greater area reduction and improved gain compared to drum shaped patches [2]. Prediction of the resonance frequency of drum shaped patches [3] and circular patches for broadband operation [4] are available in the literature. In this Letter, we propose empirical formulas for calculating the resonance frequencies of the arrow shaped microstrip antenna. These antennas can be employed for obtaining dual frequency with the same polarisation, bandwidth enhancement, circular polarisation etc. by varying its different parameters or by introducing slots. The proposed design equations provide an easier and simple way of predicting the resonant frequencies of these patches.
Resumo:
Dielectric properties of polyaniline at different frequencies were studied. Cavity perturbation technique was employed for the study. Poly aniline in the powder and pelletised forms were prepared under different environmental conditions. Different samples of poly aniline exhibit high conductivity. However, the conductivity of samples prepared under different environmental conditions is found to vary. All the samples in the powder form have high conductivity irrespective of the method of preparation. The high conductivity at microwave frequency makes it possible to be used for developing microwave components like filters.
Resumo:
A simple technique for calculating the resonance frequencies of a compact arrow-shaped microstrip antenna is presented and discussed . The accuracy of the method is validated by experimental results
Resumo:
The transient interaction between a refraction index grating and light beams during simultaneous writing and thermal fixing of a photorefractive hologram is investigated. With a diffusion- and photovoltaic-dominated carrier transport mechanism and carrier thermal activation (temperature dependent) considered in Fe:LiNbO3 crystal, from the standpoint of field-material coupling, the theoretical thermal fixing time and the space-charge field buildup, spatial distribution, and temperature dependence are given numerically by combining the band transport model with mobile ions with the coupled-wave equation
Resumo:
The question of stability of black hole was first studied by Regge and Wheeler who investigated linear perturbations of the exterior Schwarzschild spacetime. Further work on this problem led to the study of quasi-normal modes which is believed as a characteristic sound of black holes. Quasi-normal modes (QNMs) describe the damped oscillations under perturbations in the surrounding geometry of a black hole with frequencies and damping times of oscillations entirely fixed by the black hole parameters.In the present work we study the influence of cosmic string on the QNMs of various black hole background spacetimes which are perturbed by a massless Dirac field.
Resumo:
The red cells found in the red rain in Kerala, India are now considered as a possible case of extraterrestrial life form. These cells can undergo rapid replication even at an extreme high temperature of 300 deg C. They can also be cultured in diverse unconventional chemical substrates. The molecular composition of these cells is yet to be identified. This paper reports the unusual autofluorescence characteristic of the cultured red rain cells. A spectrofluorimetric study has been performed to investigate this, which shows a systematic shift of the fluorescence emission peak wavelength as the excitation wavelength is increased. Conventional biomolecules are not known to have this property. Details of this investigation and the results are discussed.
Resumo:
Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) bioceramic and chitosan (poly [( -1-4) D-glucosamine]) biopolymer show good biocompatibility in vivo. They have biological origin and show excellent interactions with microwave. Microwave study of HAp made using different drying techniques and their composites with chitosan in the ISM band is presented. Pastes are made using HAp and chitosan with different ratios of mixing. The dielectric properties of this composites match with that of human fat, collagen tissues. Some of the compositions exhibit dielectric property close to that of natural bone. This makes them more biocompatible and better substitutes for natural bone. Thus composite bioceramics can be considered as phantom model constituents for imaging purposes. Their dielectric properties prove that they are biocompatible.
Resumo:
This article reports a new method of analyzing pericardial fluid based on the measurement of the dielectric properties at microwave frequencies. The microwave measurements were performed by rectangular cavity perturbation method in the S-band of microwave frequency with the pericardial fluid from healthy persons as well as from patients suffering from pericardial effusion. It is observed that a remarkable change in the dielectric properties of patient samples with the normal healthy samples and these measurements were in good agreement with clinical analysis. This measurement technique and the method of extraction of pericardial fluid are simple. These results give light to an alternative in-vitro method of diagnosing onset pericardial effusion abnormalities using microwaves without surgical procedure.
Resumo:
Dielectric properties of polyaniline at different frequencies were studied. Cavity perturbation technique was employed for the study. Poly aniline in the powder and pelletised forms were prepared under different environmental conditions. Different samples of poly aniline exhibit high conductivity. However. the conductivity of samples prepared under different environmental conditions is found to vary. All the samples in the powder form have high conductivity irrespective of the method of preparation. The high conductivity at microwave frequency makes it possible to be used for developing microwave components like filters.
Resumo:
In the medical field, microwaves play a larger role for treatment than diagnosis. For the detection of diseases by microwave methods, it is essential to know the dielectric properties of biological materials. For the present study, a cavity perturbation technique was employed to determine the dielectric properties of these materials. Rectangular cavity resonators were used to measure the complex permittivity of human bile, bile stones, gastric juice and saliva. The measurements were carried out in the S and J bands. It is observed that normal and infected bile have different dielectric constant and loss tangent. Dielectric constant of infected bile and gastric juice varies from patient to patient. Detection and extraction of bile stone with possible method of treatment is also discussed.
Resumo:
Ionic polymers (ionomers) with interesting characteristics are emerging as important commercial polymers. Ionomers have the unique ability to behave as cross-linked materials at ambient temperatures and to melt and flow at elevated temperatures like thermoplastics. The complex permittivity and conductivity of a class of ionomers at microwave frequencies are determined using the cavity perturbation technique and the results are presented.
Resumo:
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coe±cient for the di®erent seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coe±cient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (»0.2 m s¡1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s¡1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s¡1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5£10¡7 N m¡3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coe±cient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was con¯rmed via wavelet analysis. In the case of the drag coe±cient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coe±cient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.
Resumo:
In this paper we discuss our research in developing general and systematic method for anomaly detection. The key ideas are to represent normal program behaviour using system call frequencies and to incorporate probabilistic techniques for classification to detect anomalies and intrusions. Using experiments on the sendmail system call data, we demonstrate that we can construct concise and accurate classifiers to detect anomalies. We provide an overview of the approach that we have implemented