46 resultados para Cerium oxides

em Cochin University of Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface acidity and basicity of binary oxides of Zr with Ce and La are determined using a series of Hammet indicators and Ho,,max values are reported. The generation of new acid sites habe been ascribed to the charge imbalance of M1-O-M2 bonds, where M1 and M2 are metal atoms. Both Bronsted and Lewis acid sites contribute to the acidity of the oxides

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron donating properties, surface acidity/ basicity and catalytic activity of cerium - zirconium mixed oxides at various compositions have been reported at an activation temperature of 500 degree C. The catalytic activity for the esterification of acetic acid with n-butanol has heen correlated with electron donating properties and surface acidity/basicity of the oxides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron donating properties of Ce02 and its mixed oxides with alumina have been determined from the studies of adsorption of electron acceptors of various electron affinities on the surface of these oxides. The catalytic activity of these oxides towards some reactions such as oxidation of alcohols and reduction of ketones have been Correlated with their surface electrondonor properties. The surface acidity/basicity of these oxides have also been determined by titration method using a set of Hammett indicators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prospective impact of nanomaterials in science and technology has followed an increasing trend due to their unique chemical and physical properties compared to bulk. Significant advances in current technologies in areas such as clean energy production, electronics, medicine, and environment have fuelled major research and development efforts in nanotechnology around the world. This leads to the opportunity to use such nanostructured materials in novel applications and devices. Ceria, zirconia, alumina and titania are some of the major oxides which find vast applications as a nanomaterial on a wider side.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysis is an essential technology in manufacturing industries. The investigation based on supported vanadia catalysts and it’s sulfated analogues. Vanadia is a transition metal oxide and is used in oxidation reactions in chemical industry. It is more active and selective catalysts on suitable supports. The work deals with preparation of vanadia incorporated tin oxide and zirconia systems by wet impregnation. Physico-chemical characterization using instrumental techniques like BET etc. The surface acidic properties were determined by the ammonia TPD studies, Perylene absorption studies and Cumene conversion reaction. The catalytic activities of the prepared systems are tested by Friedel-Crafts benzylation of arenes and Bechmann rearrangement of Cyclohexanol oxime. Here the rector reactions are relatively rare. So to test the application of the catalyst systems for the selective oxidation of cyclohexanol to cyclohexanone and finally evaluate the catalytic activity of the systems for the vapour phase oxidative dehydrogenation of Ethylbenzene, which leads to the formation of Industrially important compound ‘styrene’ is another objective of this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing demand for renewable energies due to the limited availability of fossil and nuclear fuels and due to growing environmental problems. Photovoltaic (PV) energy conversion has the potential to contribute significantly to the electrical energy generation in the future. Currently, the cost for photovoltaic systems is one of the main obstacles preventing production and application on a large scale. The photovoltaic research is now focused on the development of materials that will allow mass production without compromising on the conversion efficiencies. Among important selection criteria of PV material and in particular for thin films, are a suitable band gap, high absorption coefficient and reproducible deposition processes capable of large-volume and low cost production. The chalcopyrite semiconductor thin films such as Copper indium selenide and Copper indium sulphide are the materials that are being intensively investigated for lowering the cost of solar cells. Conversion efficiencies of 19 % have been reported for laboratory scale solar cell based on CuInSe2 and its alloys. The main objective of this thesis work is to optimise the growth conditions of materials suitable for the fabrication of solar cell, employing cost effective techniques. A typical heterojunction thin film solar cell consists of an absorber layer, buffer layer and transparent conducting contacts. The most appropriate techniques have been used for depositing these different layers, viz; chemical bath deposition for the window layer, flash evaporation and two-stage process for the absorber layer, and RF magnetron sputtering for the transparent conducting layer. Low cost experimental setups were fabricated for selenisation and sulphurisation experiments, and the magnetron gun for the RF sputtering was indigenously fabricated. The films thus grown were characterised using different tools. A powder X-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive X-ray analysis (EDX) and scanning electron microscopy i (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UV-Vis-NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using the two probe and four probe electrical measurements. Nature of conductivity of the films was determined by thermoprobe and thermopower measurements. The deposition conditions and the process parameters were optimised based on these characterisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

School of Environmental Studies, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkylation of phenol with methanol has been carried out over Sn-La and Sn-Sm mixed oxides of varying compositions at 623 K in a vapour phase flow reactor. It is found that the product selectivity is greatly influenced by the acid-base properties of the catalysts. Ortho-cresol formation is favoured over catalysts with weak acid sites whereas formation of 2,6-xylenol occurs in the presence of stronger acid sites. The cyclohexanol decomposition reaction and titrimetric method using Hammett indicators have been employed to elucidate the acid-base properties of the catalysts.