7 resultados para Cemeteries - Environmental impact
em Cochin University of Science
Resumo:
This thesis Entitled Environmental impact of Sand Mining :A case Study in the river catchments of vembanad lake southwest india.The entire study is addressed in nine chapters. Chapter l deals with the general introduction about rivers, problems of river sand mining, objectives, location of the study area and scope of the study. A detailed review on river classification, classic concepts in riverine studies, geological work of rivers and channel processes, importance of river ecosystems and its need for management are dealt in Chapter 2. Chapter 3 gives a comprehensive account of the study area - its location, administrative divisions, physiography, soil, geology, land use and living and non-living resources. The various methods adopted in the study are dealt in Chapter 4. Chapter 5 contains river characteristics like drainage, environmental and geologic setting, channel characteristics, river discharge and water quality of the study area. Chapter 6 gives an account of river sand mining (instream and floodplain mining) from the study area. The various environmental problems of river sand mining on the land adjoining the river banks, river channel, water, biotic and social / human environments of the area and data interpretation are presented in Chapter 7. Chapter 8 deals with the Environmental Impact Assessment (EIA) and Environmental Management Plan (EMP) of sand mining from the river catchments of Vembanad lake.
Resumo:
Department of Physical Oceanography, School of Marine Sciences,Cochin University of Science and Technology
Resumo:
This thesis Entitled Post-Environmental Evaluation of The Rajjaprabha Dam In Thailand. This post evaluation of environmental consequences of Rajjaprabha dam IS conducted ten years after its commencement. The Rajjaprabha dam project was planned and implemented as a multipurpose project, mainly for hydropower production, flood protection, fisheries, recreation and irrigation. The project includes the dam and reservoir with a 240 MW hydropower plant located about 90 km upstream from Surat Thani province, and irrigation systems covering the coastal plain in Surat Thani. The upstream storage reservoir (with about 5,639 mcm storage) and the hydropower plant had already been implemented. The first phase of irrigation system covers an area of 23,100 hectares. The second phase is envisaged to cover about 50,000 hectares. This study was conducted with the following objectives: (I) to assess all existing environmental resources and their values with the help of input-output analysis (2) to findout the beneficial impacts of the project (3) to evaluate the actual positive effects vis-a-vis the estimated effects before the project was implemented and (4) to identify all significant changes in relatives to the impacts previously assessed. The study area includes the Phum Duang river basin of about 4,668 km2 (placed on the areas that are upstream and downstream to the damsite), The duration of study is limited to 10 years after the dam has become operational i.e. from 1987-1997. The results of the study reveal that there is no significant changes in climatic and ground water resources, with respect to the study area inspte of the fact that the physical and chemical properties of the soil have slightly changed. Sedimentation in the reservoir does not have much effect on the function of the dam.
Resumo:
Distribution of toxic metal in the sediment core is an important area of research for environmental impact studies. Sediment cores were collected from two prominent region(C1 and C2) of CE and subjected to geochemical analysis to determine distribution of toxic metals (Cd, Co, Cr, Cu and Pb ), texture characteristics, total organic carbon (TOC) and CHNS. Statistical analysis was done to understand the interrelationship between the components. In the studied cores, metal contamination level was identified for Pb, Cu; Cr, in C1 and C2 respectively. The metal distribution depends on the granulometric factor, geogenic mineral components and anthropogenic input. Correlation analysis (CA) and Principal component(PCA) analysis also support these results
Resumo:
This thesis Entitled studies on the macrobenthic community of cochin backwaters with special reference to culture of eriopisa chilkensis (Gammaridae- amphipoda).Benthic organisms are usually studied for environmental impact assessment, pollution control and resource conservation. The benthic monitoring component has three major objectives: 1) characterize the benthic communities to assess the estuarine health, 2) determine seasonal and spatial variability in benthic communities, and 3) detect changes in the estuarine community through examination of changes in abundances of specific indicator taxa and other standard benthic indices.Cochin backwaters situated at the tip of the northern Vembanad lake is a tropical positive estuarine system. The backwaters of Kerala support as much biological productivity and diversity as tropical rain forest and are responsible for the rich fishery potential of Kerala. Backwaters also act as nursery grounds for commercially important prawns and fishes.The thesis has been subdivided into seven chapters. The first chapter gives a general introduction about the topic and also highlights the scope and purpose of the study. The second chapter covers the methodology adopted for the collection and analysis of water quality parameters, sediment and the macrobenthic fauna.Chapter 3 deals with hydrographic features, sediment characteristics and the spatial variation and abundance of macrobenthic fauna in the Cochin estuary.Chapter 4 explains the impact of organic enrichment on macrobenthic popUlation in the Cochin estuary and includes the comparison of the present data with the earlier work in this region.Chapter 5 deals with seasonal variability in abundance of macrobenthic species in the estuary. The study was conducted from 9 stations during three seasons (pre-monsoon, monsoon and post-monsoon) in 2003.Chapter 6 deals with Life history and Population Dynamics of Eriopisa chilkensis Chilton (Gammaridae-Amphipoda). The life cycle of the gammarid amphipod Eriopisa chilkensis from the Cochin estuary, south west coast of India was studied for the first time under laboratory conditions.
Resumo:
Forest is essential for the healthy subsistence of human being on earth. Law has been framed to regulate exploitation of forest.This study is an analysis of the law relating to forest from an environmental perspective.Practical suggestions are also made for the better protection of forest .Forest is a valuable component of human environment.For healthy subsistence of human beings on earth it is essential that at least one third of the land area on earth should be under forest cover. Forest helps in keeping air and water fresh and climate good.The Indian Forest Act 1927 and State legislation relating to forest impose Governmental control over forests by classifying them into reserved forests. Protected forests and village forests.Effective environmental impact studies facilitate adoption of the practice of sustainable development.Permission should not be granted for a project before examination of its impact on the flora and fauna in forest.Kerala, much of the vested forest remains under the control of the State Government and are managed like reserved forests.Infrastructural facilities require improvement in almost all States for protecting forest.Inter-State problems can be minimised if a central forest legislation is applied uniformly throughout India.Voluntary organisations should be encouraged to taxe part actively in the programmes for conserving forest and wildlife.The new Forest Act should provide for effective environmental impact study before development projects are undertaken in forest areas. The guidelines for this should be clearly laid down in the Act.The law relating to forest should also clearly lay down the guidelines for implementing social forestry programmes. The Forest Department should be authorised to lease lands for planting useful trees. The new forest legislation should also recognise the traditional tribal rights in forest. The Indian Forest Act 1927 and the State legislation relating to forest with their outdated revenue policy and scheme should be replaced by such a new forest legislation framed with an environmental peres-pective. The new law should be uniformly applied throughout India .
Resumo:
In the past, natural resources were plentiful and people were scarce. But the situation is rapidly reversing. Our challenge is to find a way to balance human consumption and nature’s limited productivity in order to ensure that our communities are sustainable locally, regionally and globally. Kochi, the commercial capital of Kerala, South India and the second most important city next to Mumbai on the Western coast is a land having a wide variety of residential environments. Due to rapid population growth, changing lifestyles, food habits and living standards, institutional weaknesses, improper choice of technology and public apathy, the present pattern of the city can be classified as that of haphazard growth with typical problems characteristics of unplanned urban development. Ecological Footprint Analysis (EFA) is physical accounting method, developed by William Rees and M. Wackernagel, focusing on land appropriation using land as its “currency”. It provides a means for measuring and communicating human induced environmental impacts upon the planet. The aim of applying EFA to Kochi city is to quantify the consumption and waste generation of a population and to compare it with the existing biocapacity. By quantifying the ecological footprint we can formulate strategies to reduce the footprint and there by having a sustainable living. In this paper, an attempt is made to explore the tool Ecological Footprint Analysis and calculate and analyse the ecological footprint of the residential areas of Kochi city. The paper also discusses and analyses the waste footprint of the city. An attempt is also made to suggest strategies to reduce the footprint thereby making the city sustainable