3 resultados para Catalan language -- Words, New
em Cochin University of Science
Resumo:
Statistical Machine Translation (SMT) is one of the potential applications in the field of Natural Language Processing. The translation process in SMT is carried out by acquiring translation rules automatically from the parallel corpora. However, for many language pairs (e.g. Malayalam- English), they are available only in very limited quantities. Therefore, for these language pairs a huge portion of phrases encountered at run-time will be unknown. This paper focuses on methods for handling such out-of-vocabulary (OOV) words in Malayalam that cannot be translated to English using conventional phrase-based statistical machine translation systems. The OOV words in the source sentence are pre-processed to obtain the root word and its suffix. Different inflected forms of the OOV root are generated and a match is looked up for the word variants in the phrase translation table of the translation model. A Vocabulary filter is used to choose the best among the translations of these word variants by finding the unigram count. A match for the OOV suffix is also looked up in the phrase entries and the target translations are filtered out. Structuring of the filtered phrases is done and SMT translation model is extended by adding OOV with its new phrase translations. By the results of the manual evaluation done it is observed that amount of OOV words in the input has been reduced considerably
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements
Resumo:
This paper presents a novel approach to recognize Grantha, an ancient script in South India and converting it to Malayalam, a prevalent language in South India using online character recognition mechanism. The motivation behind this work owes its credit to (i) developing a mechanism to recognize Grantha script in this modern world and (ii) affirming the strong connection among Grantha and Malayalam. A framework for the recognition of Grantha script using online character recognition is designed and implemented. The features extracted from the Grantha script comprises mainly of time-domain features based on writing direction and curvature. The recognized characters are mapped to corresponding Malayalam characters. The framework was tested on a bed of medium length manuscripts containing 9-12 sample lines and printed pages of a book titled Soundarya Lahari writtenin Grantha by Sri Adi Shankara to recognize the words and sentences. The manuscript recognition rates with the system are for Grantha as 92.11%, Old Malayalam 90.82% and for new Malayalam script 89.56%. The recognition rates of pages of the printed book are for Grantha as 96.16%, Old Malayalam script 95.22% and new Malayalam script as 92.32% respectively. These results show the efficiency of the developed system