5 resultados para Castor oil polymer
em Cochin University of Science
Resumo:
Mechanical properties and thermal degradation of natural rubber compounds containing castor oil were studied to evaluate its suitability as plasticizer. Naphthenic oil was used as a reference plasticizer. The cure time was marginally lower in the case of castor oil mixes, probably due to the presence offree fatty acids in it. The tear strength and modulus were better in the case of mixes containing castor oil, while most of the other mechanical properties were comparable to the mixes containing naphthenic oil. The heat build up and compression set were higher than that of the naphthenic oil mixes. Thermal studies showed an increase of 8 °C in the temperature of initiation of degradation and an increase of 6 °C in the temperature at which the peak rate of degradation occurred. The peak rate of degradation was comparable to that of the reference compound
Resumo:
Poor cold flow properties of vegetable oils are a major problem preventing the usage of many abundantly available vegetable oils as base stocks for industrial lubricants. The major objective of this research is to improve the cold flow properties of vegetable oils by various techniques like additive addition and different chemical modification processes. Conventional procedure for determining pour point is ASTM D97 method. ASTM D97 method is time consuming and reproducibility of pour point temperatures is poor between laboratories. Differential Scanning Calorimetry (DSC) is a fast, accurate and reproducible method to analyze the thermal activities during cooling/heating of oil. In this work coconut oil has been chosen as representative vegetable oil for the analysis and improvement cold flow properties since it is abundantly available in the tropics and has a very high pour point of 24 °C. DSC is used for the analysis of unmodified and modified vegetable oil. The modified oils (with acceptable pour points) were then subjected to different tests for the valuation of important lubricant properties such as viscometric, tribological (friction and wear properties), oxidative and corrosion properties.A commercial polymethacrylate based PPD was added in different percentages and the pour points were determined in each case. Styrenated phenol(SP) was added in different concentration to coconut oil and each solution was subjected to ASTM D97 test and analysis by DSC. Refined coconut oil and other oils like castor oil, sunflower oil and keranja oil were mixed in different proportions and interesterification procedure was carried out. Interesterification of coconut oil with other vegetable oils was not found to be effective in lowering the pour point of coconut oil as the reduction attained was only to the extent of 2 to 3 °C.Chemical modification by acid catalysed condensation reaction with coconut oil castor oil mixture resulted in significant reduction of pour point (from 24 ºC to -3 ºC). Instead of using triacylglycerols, when their fatty acid derivatives (lauric acid- the major fatty acid content of coconut oil and oleic acid- the major fatty acid constituents of monoand poly- unsaturated vegetable oils like olive oil, sunflower oil etc.) were used for the synthesis , the pour point could be brought down to -42 ºC. FTIR and NMR spectroscopy confirmed the ester structure of the product which is fundamental to the biodegradability of vegetable oils. The tribological performance of the synthesised product with a suitable AW/EP additive was comparable to the commercial SAE20W30 oil. The viscometric properties (viscosity and viscosity index) were also (with out additives) comparable to commercial lubricants. The TGA experiment confirmed the better oxidative performance of the product compared to vegetable oils. The sample passed corrosion test as per ASTM D130 method.
Resumo:
Unsaturated polyester resins (UPRs) are extensively used by the fiber-reinforced plastic (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, UPRs were chemically modified by reactive blending with polyurethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of unsaturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer. The prepolymers were based on toluene diisocyanate (TDI) and each of hydroxy-terminated natural rubber (HTNR), hydroxy- terminated polybutadiene (HTPB), polyethylene glycol (PEG), and castor oil. Properties like tensile strength, toughness, impact resistance, and elongation-at-break of the modified UPRs show considerable improvement by this modification. The thermal stability of the copolymer is also marginally better
Resumo:
ABSTRACT: Rubber seed oil was used as a multipurpose ingredient in natural rubber (NR) and styrene butadiene rubber (SBR) compounds. The study shows that the oil, when substituted for conventional plasticiser, imparts excellent mechanical properties to NR and SBR vulcanizates. Further, it also improves aging resistance, reduces cure time, increases abrasion resistance and flex resistance, and reduces blooming.
Resumo:
The study is undertaken on PVC blends because of their all-round importance-One of the most prominent needs of PVC in application end-use is permanent plasticizationlo. Butadiene-acrylonitrile rubber (NBR) has been utilized as permanent plasticizer for PVC since the 1940s for wire and cable insulation, food contact, and pondliners used for oil containment23'24. Also plasticized PVC has been added to vulcanizable nitrile rubber, to yield improved ozone, thermal ageing, and chemical resistance resulting in applications including fuel hose covers, gaskets, conveyor belt covers, and printing roll covers. This blend is miscible in the range of 23 to 45 per cent acrylonitrile content in the butadiene-acrylqnitrile copolymerzs. The first phase of the study was directed towards modification blends. These blends, in addition to the polymers, require a host of additives like curatives for the NBR phase and stabilizers for the PVC phase26of the existing PVC blends, especially NBR/PVC. The second phase of the study was directed towards the development of novel PVC based blends. Chloroprene rubber (polychloroprene) (CR) is structurally similar to PVC and hence is likely to form successful blends with PVC32.