7 resultados para Cardiovascular system - Diseases - Thesis
em Cochin University of Science
Resumo:
The studies were conducted in nine stations with varying ecological characteristics along Cochin backwaters and adjoining canals. Many workers opined that the distribution of rotifers is cosmopolitan. The significance of rotifers as first food for early larvae was indicated by Fujita. Aquaculture is a fast growing field in fisheries sector and it is gaining more importance as the fish landings and supply are getting irregular. A consistent supply of fish/shellfish can only be achieved through aquaculture. The success of any culture activity depends on the timely production of seeds of finfishes/shellfishes. The availability of wild seed is seasonal and erratic. So, a dependable source of seed of fishes and shellfishes is possible only through large scale production in hatchery. A successful seed production activity depends on the availability of a variety of suitable live feed organisms in sufficient quantities at the proper time for use in the larval stages. As the live feeds promote high growth rates, easy digestion, assimilation and the quality of not contaminating the culture water when compared to other artificial feeds, make the culture of live feed organisms the principal means of providing food for the larvae of finfishes and shellfishes. Rotifers are considered to be an excellent and indispensable food for larvae of many finfishes and crustaceans. It (1960) was the first to culture Brachionus plicatilis for feeding marine fish larvae, and now it is being extensively used as live feed in hatcheries all over the world. They are a group of microscopic organisms coming under the Phylum Rotifera which comprises of about 2000 species. Their slow swimming habits, ability to tolerate a wide range of salinities, parthenogenetic mode of reproduction and ability to get enriched easily, make rotifers an ideal live feed organism. The major factors such as temperature, salinity and food that influence the reproductive potential and thereby the population size of rotifer, Salinity is one of the most important aspect influencing the reproductive rate of rotifers. The feed type and feed concentration play a vital role in influencing the reproductive rate of rotifers. For culture of rotifers, the commonly used micro algae belong to Chlorella, Nannochloropsis, Isochrysis and Tetraselmis. While some studies have suggested that, algal diet has little effect on reproductive rates in 1979 while using the rotifer, Brachionus plicatilis as feed for the larvae of red sea bream, Pagrus major. It is generally accepted that rotifers play a pivotal role in the successful rearing of marine fish larvae.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
In the present scenario of energy demand overtaking energy supply top priority is given for energy conservation programs and policies. Most of the process plants are operated on continuous basis and consumes large quantities of energy. Efficient management of process system can lead to energy savings, improved process efficiency, lesser operating and maintenance cost, and greater environmental safety. Reliability and maintainability of the system are usually considered at the design stage and is dependent on the system configuration. However, with the growing need for energy conservation, most of the existing process systems are either modified or are in a state of modification with a view for improving energy efficiency. Often these modifications result in a change in system configuration there by affecting the system reliability. It is important that system modifications for improving energy efficiency should not be at the cost of reliability. Any new proposal for improving the energy efficiency of the process or equipments should prove itself to be economically feasible for gaining acceptance for implementation. In order to arrive at the economic feasibility of the new proposal, the general trend is to compare the benefits that can be derived over the lifetime as well as the operating and maintenance costs with the investment to be made. Quite often it happens that the reliability aspects (or loss due to unavailability) are not taken into consideration. Plant availability is a critical factor for the economic performance evaluation of any process plant.The focus of the present work is to study the effect of system modification for improving energy efficiency on system reliability. A generalized model for the valuation of process system incorporating reliability is developed, which is used as a tool for the analysis. It can provide an awareness of the potential performance improvements of the process system and can be used to arrive at the change in process system value resulting from system modification. The model also arrives at the pay back of the modified system by taking reliability aspects also into consideration. It is also used to study the effect of various operating parameters on system value. The concept of breakeven availability is introduced and an algorithm for allocation of component reliabilities of the modified process system based on the breakeven system availability is also developed. The model was applied to various industrial situations.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
In the present study, fifteen typee of diseases occurring in twenty one species of finfishes end shellfishes are documented and the causes studied. All these are being reported from India for the first time which adds considerably to our existinq knowledge on the subject.In fact, the candidate's studies embodied in this Thesis has also an applied significance aimed at the proper management_of finfish and shellfish aquaculture systems in this country.The thesis is presented in seven main chapters.