3 resultados para Cancro oral

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biophotonics Laboratory,Centre for Earth Science Studies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several oral vaccination studies have been undertaken to evoke a better protection against white spot syndrome virus (WSSV), amajor shrimp pathogen. Formalin-inactivated virus andWSSV envelope protein VP28 were suggested as candidate vaccine components, but their uptake mechanism upon oral delivery was not elucidated. In this study the fate of these components and of live WSSV, orally intubated to black tiger shrimp (Penaeus monodon) was investigated by immunohistochemistry, employing antibodies specific for VP28 and haemocytes. The midgut has been identified as the most prominent site of WSSV uptake and processing. The truncated recombinant VP28 (rec-VP28), formalin-inactivated virus (IVP) and live WSSV follow an identical uptake route suggested as receptor-mediated endocytosis that starts with adherence of luminal antigens at the apical layers of gut epithelium. Processing of internalized antigens is performed in endo-lysosomal compartments leading to formation of supra-nuclear vacuoles. However, the majority of WSSV-antigens escape these compartments and are transported to the inter-cellular space via transcytosis. Accumulation of the transcytosed antigens in the connective tissue initiates aggregation and degranulation of haemocytes. Finally the antigens exiting the midgut seem to reach the haemolymph. The nearly identical uptake pattern of the different WSSV-antigens suggests that receptors on the apical membrane of shrimp enterocytes recognize rec-VP28 efficiently. Hence the truncated VP28 can be considered suitable for oral vaccination, when the digestion in the foregut can be bypassed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fenneropenaeus indicus could be protected from white spot disease (WSD) caused by white spot syndrome virus (WSSV) using a formalin-inactivated viral preparation (IVP) derived from WSSV-infected shrimp tissue. The lowest test quantity of lyophilized IVP coated onto feed at 0.025 g–1 (dry weight) and administered at a rate of 0.035 g feed g–1 body weight d–1 for 7 consecutive days was sufficient to provide protection from WSD for a short period (10 d after cessation of IVP administration). Shrimp that survived challenges on the 5th and 10th days after cessation of IVP administration survived repeated challenges although they were sometimes positive for the presence of WSSV by a polymerase chain reaction (PCR) assay specific for WSSV. These results suggest that F. indicus can be protected from WSD by simple oral administration of IVP