15 resultados para COVALENT ELECTROPOLYMERIZATION
em Cochin University of Science
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.
Resumo:
Invertase was adsorbed onto micro-porous acid-activated montmorillonite clay (K-10) by two procedures, namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, surface area measurements and 27Al NMR. XRD measurements revealed an expansion of clay layers due to immobilization which suggests that intercalation had taken place. Surface area measurements also support this observation. 27Al NMR showed that interaction of enzyme with tetrahedral and octahedral Al changes with the immobilization procedure. Sucrose hydrolysis was performed in a batch reactor. The immobilized enzymes showed enhanced pH and thermal stabilities. Optimum pH and temperature were found to increase upon immobilization. The effectiveness factor (η) and Michaelis constant (Km) suggest that diffusional resistances play a major role in the reaction. The immobilized invertase could be stored in buffer of pH 5 and 6 at 5 °C without any significant loss in activity for 20 days.
Resumo:
Three enzymes, α-amylase, glucoamylase and invertase, were immobilized on acid activated montmorillonite K 10 via two independent techniques, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, N2 adsorption measurements and 27Al MAS-NMR spectroscopy. The XRD patterns showed that all enzymes were intercalated into the clay inter-layer space. The entire protein backbone was situated at the periphery of the clay matrix. Intercalation occurred through the side chains of the amino acid residues. A decrease in surface area and pore volume upon immobilization supported this observation. The extent of intercalation was greater for the covalently bound systems. NMR data showed that tetrahedral Al species were involved during enzyme adsorption whereas octahedral Al was involved during covalent binding. The immobilized enzymes demonstrated enhanced storage stability. While the free enzymes lost all activity within a period of 10 days, the immobilized forms retained appreciable activity even after 30 days of storage. Reusability also improved upon immobilization. Here again, covalently bound enzymes exhibited better characteristics than their adsorbed counterparts. The immobilized enzymes could be successfully used continuously in the packed bed reactor for about 96 hours without much loss in activity. Immobilized glucoamylase demonstrated the best results.
Resumo:
Invertase was immobilized on acid activated montmorillonite via two independent procedures, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and their activity was tested in a fixed bed reactor. XRD revealed that the enzyme was situated on the periphery of the clay and the side chains of different amino acid residues were involved in intercalation with the clay matrix. NMR demonstrated that tetrahedral Al was linked to the enzyme during adsorption and the octahedral Al was involved during covalent binding. Secondary interaction of the enzyme with Al was also observed. N2 adsorption studies showed that covalent binding of enzymes caused pore blockage since the highly polymeric species were located at the pore entrance. The fixed bed reactor proved to be efficient for the immobilized invertase. The optimum pH and pH stability improved upon immobilization. The kinetic parameters calculated also showed an enhanced efficiency of the immobilized systems. They could be used continuously for long period. Covalently bound invertase demonstrated greater operational stability.
Resumo:
Invertase was immobilised on microporous montmorillonite K-10 via adsorption and covalent binding. The immobilised enzymes were tested for sucrose hydrolysis activity in a batch reactor. Km for immobilised systems was greater than free enzyme. The immobilised forms could be reused for 15 continuous cycles without any loss in activity. After 25 cycles, 85% initial activity was retained. A study on leaching of enzymes showed that 100% enzyme was retained even after 15 cycles of reuse. Leaching increased with reaction temperature. Covalent binding resisted leaching even at temperatures of 70 °C.
Resumo:
Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.
Resumo:
In the present study an attempt has been made to synthesize some simple complexes of multidentate ligands. Analogous zeolite encapsulated complexes were also synthesized and characterized. Immobilization on to polymer supports through covalent attachment is expected to solve the problem of decomposition of many complexes during catalytic reaction. Hence the work is also extended to the synthesis and characterization of some polymer supported complexes of Schiff base Iigands. All the three types of synthesized complexes, simple, zeolite encapsulated and polystyrene anchored, were subjected to catalytic activity study towards catechol-oxidation reaction. A selected group of complexes were also screened for their catalytic activity towards phenol-oxidation reaction. Biological screening of the synthesized ligands and neat complexes were done with a view to establish the effect of complexation on biological systems.
Resumo:
Development of organic molecules that exhibit selective interactions with different biomolecules has immense significance in biochemical and medicinal applications. In this context, our main objective has been to design a few novel functionaIized molecules that can selectively bind and recognize nucleotides and DNA in the aqueous medium through non-covalent interactions. Our strategy was to design novel cycIophane receptor systems based on the anthracene chromophore linked through different bridging moieties and spacer groups. It was proposed that such systems would have a rigid structure with well defined cavity, wherein the aromatic chromophore can undergo pi-stacking interactions with the guest molecules. The viologen and imidazolium moieties have been chosen as bridging units, since such groups, can in principle, could enhance the solubility of these derivatives in the aqueous medium as well as stabilize the inclusion complexes through electrostatic interactions.We synthesized a series of water soluble novel functionalized cyclophanes and have investigated their interactions with nucleotides, DNA and oligonucIeotides through photophysical. chiroptical, electrochemical and NMR techniques. Results indicate that these systems have favorable photophysical properties and exhibit selective interactions with ATP, GTP and DNA involving electrostatic. hydrophobic and pi-stacking interactions inside the cavity and hence can have potential use as probes in biology.
Resumo:
This work was focused to study the immobilization of enzymes on polymers. A large range of polymer matrices have been employed as supports for enzyme immobilization. Here polyaniline (PAN!) and poly(0~toluidine) (POT) were used as supports. PANI and POT provides an excellent support for enzyme immobilization by virtue of its facile synthesis, superior chemical and physical stabilities, and large retention capacity. We selected industrially important starch hydrolyzing enzymes a-amylase and glucoamylase for the study. In this work the selected enzymes were immobilized via adsorption and covalent bonding methods.To optimize the catalytic efficiency and stability of the resulting biocatalysts, the attempt was made to understand the immobilization effects on enzymatic properties. The effect of pH of the immobilization medium, time of immobilization on the immobilization efficiency was observed. The starch hydrolyzing activity of free 0:-amylase and glucoamylase were compared with immobilized forms. Immobilization on solid supports changes the microenvironment of the enzyme there by influences the pH and temperature relationship on the enzymatic activity. Hence these parameters also optimized. The reusability and storage stability of immobilized enzymes an important aspect from an application standpoint, especially in industrial applications. Taking in to consideration of this, the reusability and the long tenn storage stability of the immobilized enzyme investigated.
Resumo:
Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements
Resumo:
During the past few decades, a wide spread interest in the structural, optical, electrical and other physical properties of the transition metal dichalcogenide layer compounds has evolved. The members of this family of compounds can be regarded as strongly bonded two dimensional chalcogen-metal~chalcogen layers which are loosely coupled to one another by the weak ven der Waal's forces. Because of this type of bonding, the crystals are easily cleavable along the basal plane and show highly anisotropic properties. This thesis contains the growth and the study of the physical properties of certain tin dichalcogenide crystals (SnS2 and SnSe2). Tin disulphide and tin diselenide crystallize in the hexagonal CdI2 type crystal structure. This structure consists of layers of tin atoms sandwiched between two layers of chalcogen atoms. A tin atom is surrounded by six chalcogen atoms octahedrally.In the layers the atoms are held together by covalent bonding and in between the layers there is van der Waal's bonding.
Resumo:
During the past few decades, a wide spread interest in the structural, optical, electrical and other physical properties of the transition metal dichalcogenide layer compounds has evolved. The members of this family of compounds can be regarded as stronglybonded two dimensional chalcogen-metal-chalcogen layers which are loosely coupled to one another by the weak van der Waal's forces. Because of this type of bonding, the crystals are easily cleavable along the basal plane and show highly anisotropic properties. This thesis contains the growth and the study of the physical properties of certain tin dichalcogenide crystals (SnS2 and Snsea). Tin disulphide and tin diselenide crystallize in the hexagonal CdI2 type crystalstructure. This structure consists of layers of tin atoms sandwiched between two layers of chalcogen atoms. Aitin atom is surrounded by six chalcogen atoms octahedrally. In the layers the atoms are held together by covalent bonding and in between the layers there is van der Waal's bonding.
Resumo:
Supra molecular architectures of coordination complexes of liydrazones through non covalent interactions have been explored. Molecular self—assernbly driven by weak interactions such as hydrogen— bonding, K '”T[, C-1-I‘ "TE, van der Waals interactions, and so forth are currently of tremendous research interest in the fields of molecule based materials. The directional properties of the hydrogembonding interaction associate discrete molecules into aggregate structures that are sufficiently stable to be considered as independent chemical species. Chemistry can borrow nature’s strategy to utilize hydrogen-bonding as Well as other noncovalent interactions as found in secondary and tertiary structures of proteins such as the double helix folding of DNA, hydrophobic selflorganization of phospholipids in cell membrane etc. In supramolecular chemistry hydrogen bonding plays an important role in forming a variety of architectures. Thus, the wise modulation and tuning of the complementary sites responsible for hydrogen—bond formation have led to its application in supramolecular electronics, host-guest chemistry, self-assembly of molecular capsules, nanotubes etc. The work presented in this thesis describes the synthesis and characterization of metal complexes derived from some substituted aroylhydrazones. The thesis is divided into seven chapters.
Resumo:
Electrochemical sensors are increasingly being investigated to perform measurements for single or multiple analytes. Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for drug analysis. Electrochemical sensors for the measurement of analytes of interest in clinical chemistry are ideally suited for these applications, due to their high sensitivity and selectivity, simple-to-operate, rapid response time and low-cost. As part of the present investigations eight voltammetric sensors have been fabricated for six drugs such as PAM Chloride, Tamsulosin Hydrochloride, Hesperidin Methyl Chalcone, Guaiphenesin, Cephalexin and Amoxicillin trihydrate. The modification techniques adopted as part of the present work include multiwalled carbon nanotube (MWNT) based modifications, electropolymerization, gold nanoparticle (AuNP) based modifications and platinum nanoparticle (PtNP) based modifications. The thesis is divided into nine chapters
Resumo:
Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications.