4 resultados para CHEMICAL ENGINEERING

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wet peroxide oxidation (WPO) of phenol is an effective means for the production of diphenols, which are of great industrial importance. An added advantage of this method is the removal of phenol from wastewater effluents. Hydroxylation of phenol occurs efficiently over mixed iron aluminium pillared montmorillonites. An initial induction period is noticed in all cases. A thorough study on the reaction variables suggests free radical mechanism for the reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inhibited α brasses are largely immune to dezincification in most water, but the effect of tin and arsenic addition to α/β brasses is not so reliable or predictable in controlling the problem. There have been many cases of dezincification in duplex brasses in both fresh water and seawater. There is no reliable method of inhibiting the dezincification of two-phase brass despite there are some protection methods such as inhibitors, electro deposition and electro polymerization. Organic coatings are effectively used for the protection of metals due to their capacity to act as a physical barrier between the metal surface and corrosive environment. Hence, epoxy coating on brass was applied and effect of this against dezincification in Cochin estuarine water over a period of one year was studied and reported in this paper

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to minimize the risk of failures or major renewals of hull structures during the ship's expected life span, it is imperative that the precaution must be taken with regard to an adequate margin of safety against any one or combination of failure modes including excessive yielding, buckling, brittle fracture, fatigue and corrosion. The most efficient system for combating underwater corrosion is 'cathodic protection'. The basic principle of this method is that the ship's structure is made cathodic, i.e. the anodic (corrosion) reactions are suppressed by the application of an opposing current and the ship is there by protected. This paper deals with state of art in cathodic protection and its programming in ship structure