5 resultados para Brazil, Programa Minha Casa Minha Vida, energy requirements for cooling, improving performance buiding, EnergyPlus

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering combined with multihop communication is a promising solution to cope with the energy requirements of large scale Wireless Sensor Networks. In this work, a new cluster based routing protocol referred to as Energy Aware Cluster-based Multihop (EACM) Routing Protocol is introduced, with multihop communication between cluster heads for transmitting messages to the base station and direct communication within clusters. We propose EACM with both static and dynamic clustering. The network is partitioned into near optimal load balanced clusters by using a voting technique, which ensures that the suitability of a node to become a cluster head is determined by all its neighbors. Results show that the new protocol performs better than LEACH on network lifetime and energy dissipation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.Well developed thin film photovoltaic technologies are based on amorphous silicon, CdTe and CuInSe2. However the cell fabrication process using amorphous silicon requires handling of very toxic gases (like phosphene, silane and borane) and costly technologies for cell fabrication. In the case of other materials too, there are difficulties like maintaining stoichiometry (especially in large area films), alleged environmental hazards and high cost of indium. Hence there is an urgent need for the development of materials that are easy to prepare, eco-friendly and available in abundance. The work presented in this thesis is an attempt towards the development of a cost-effective, eco-friendly material for thin film solar cells using simple economically viable technique. Sn-based window and absorber layers deposited using Chemical Spray Pyrolysis (CSP) technique have been chosen for the purpose

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A packed bed bioreactor (PBBR) was developed for rapid establishment of nitrification in brackish water hatchery systems in the tropics. The reactors were activated by immobilizing ammonia-oxidizing (AMONPCU- 1) and nitrite-oxidizing (NIONPCU-1) bacterial consortia on polystyrene and low-density polyethylene beads, respectively. Fluorescence in situ hybridization demonstrated the presence of autotrophic nitrifiers belong to Nitrosococcus mobilis, lineage of b ammonia oxidizers and nitrite oxidizer Nitrobacter sp. in the consortia. The activated reactors upon integration to the hatchery system resulted in significant ammonia removal (P\0.01) culminating to its undetectable levels. Consequently, a significantly higher percent survival of larvae was observed in the larval production systems. With spent water the reactors could establish nitrification with high percentage removal of ammonia (78%), nitrite (79%) and BOD (56%) within 7 days of initiation of the process. PBBR is configured in such a way to minimize the energy requirements for continuous operation by limiting the energy inputs to a single stage pumping of water and aeration to the aeration cells. The PBBR shall enable hatchery systems to operate under closed recirculating mode and pave the way for better water management in the aquaculture industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.