16 resultados para Brain function
em Cochin University of Science
Resumo:
The present study describes that acetylcholine through muscarinic Ml and M3 receptors play an important role in the brain function during diabetes as a function of age. Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic function, decreased in the brain regions - the cerebral cortex, brainstem and corpus striatum of old rats compared to young rats. in diabetic condition, it was increased in both young and old rats in cerebral cortex, and corpus striatum while in brainstem it was decreased. The functional changes in the muscarinic receptors were studied in the brain regions and it showed that muscarinic M I receptors of old rats were down regulated in cerebral cortex while in corpus striatum and brainstem it was up regulated. Muscarinic M3 receptors of old rats showed no significant change in cerebral cortex while in corpus striatum and brainstem muscarinic receptors were down regulated. During diabetes, muscarinic M I receptors were down regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were up regulated. In old rats, M I receptors were up regulated in cerebral cortex, corpus striatum and in brainstem they were down regulated. Muscarinic M3 receptors were up regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were down regulated. In old rats, muscarinic M l receptors were up regulated in cerebral cortex, corpus striatum and brainstem. In insulin treated diabetic rats the activity of the receptors were reversed to near control. Pancreatic muscarinic M3 receptor activity increased in the pancreas of both young and old rats during diabetes. In vitro studies using carbachol and antagonists for muscarinic Ml and M3 receptor subtypes confirmed the specific receptor mediated neurotransmitter changes during diabetes. Calcium imaging studies revealed muscarinic M I mediated Ca2 + release from the pancreatic islet cells of young and old rats. Electrophysiological studies using EEG recording in young and old rats showed a brain activity difference during diabetes. Long term low dose STH and INS treated rat brain tissues were used for gene expression of muscarinic Ml, M3, glutamate NMDARl, mGlu-5,alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors to observe the neurotransmitter receptor functional interrelationship for integrating memory, cognition and rejuvenating brain functions in young and old. Studies on neurotransmitter receptor interaction pathways and gene expression regulation by second messengers like IP3 and cGMP in turn will lead to the development of therapeutic agents to manage diabetes and brain activity.From this study it is suggested that functional improvement of muscarinic Ml, M3, glutamate NMDAR1, mGlu-5, alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors mediated through IP3 and cGMP will lead to therapeutic applications in the management of diabetes. Also, our results from long term low dose STH and INS treatment showed rejuvenation of the brain function which has clinical significance in maintaining healthy period of life as a function of age.
Resumo:
Gamma amino outyric acid is a major inhibitory neurotrarsr titter in the central nervous system. In the preset study sv, Have investigate(' the alteration of GABA receptor, In t he hrain stem of rats during pancreatic regeneration. Three groups of rats were used for the study: sham operated, 72 It and 7 days partially pancreatectonnsea. GABA was (juan- (ified by [H]GABA receptor iispiacement method. GABA receptor kin: 10, pat at i et•ers were studied by using the binding of F'.](iAhA as ligand to the Triton X-100 treated me,i1,;-:mes a1,J displacement with unlabelled GABA. GhRA,v receptor activity was studied by using the [` -1 h3cuculline and displacement with unlabellecV euculline. ;.\13A content significantly decreased (1' < (1.(101 ) it, 0-e brain stern during the regeneration of pancreas. 'I hl, high affinity (IAI3A receptor binding sho?:ed it sigii'f cant decrease in 131„.,\ (P < 11.01) and K,I 1).05) n 72 h and 7 days after partial pancreatee 'timv. ";:flhicuculline hin(Iing showed it signih eat, 'le ( r(, :,e in /Jn1,s and K,I (P < 0.001) in 72 h pa^.rcreaw,, mised rats when compared with sham wt--tt' as P,n and K,I reversed to near sham after 7 da,s of pancreatectomv. The results sugge,) that GAB A throur,r; ('GABA receptors in brain Atcem has a regulatory uie during active regeneration of pancreas which will have inunense clinical significance in the treatment of cliahetcs.
Resumo:
Kinetic parameters of brain glutamate dehydrogenase (GDH) were compared in the brain stem, cerebellum and cerebral cortex of three weeks and one year old streptozotocin (STZ) induced four day diabetic rats with respective controls. A single intrafemoral dose of STZ (60mg/Kg body weight) was administered to induce diabetes in both age groups. After four days the blood glucose levels showed a significant increase in the diabetic animals of both age groups compared with the respective controls. The increase in blood glucose was significant in one year old compared to the three weeks old diabetic rats. The Vmm of the enzyme was decreased in all the brain regions studied, of the three weeks old diabetic rats without any significant change in the Km. In the adult the Vmax of GDH was increased in cerebellum and brain stem but was unchanged in the cerebral cortex. The K. was unchanged in cerebellum and cerebral cortex but was increased in the brain stem. These results suggest there may be an important regulatory role of the glutamate pathway in brain neural network disturbances and neuronal degeneration in diabetes as a function of age.
Resumo:
Department of Biotechnology, Cochin University of Science and Technology
Resumo:
I) To study the changes in the content of brain rrrorroamirres in streptozotocirr-irrduced tliabetes as a lirnction of age and to lirrd the role oliadrenal lrornroncs in diabetic state. 2) To assess the adrenergic receptor function in the brain stem ofstreptozotocin-induced diabetic rats ofdillerent ages. 3) To study the changes in the basal levels of second messenger cAMP in the brain stenr ofstreptozotocin-induced diabetic rats as a function of age. 4) To study the changes occurring in the content ofmorroamines and their metabolites in whole pancreas and isolated pancreatic islets of streptozotocin-diabetic rats as a function ofage and the effect of adrenal hormones. 5) To study the adrenergic receptors and basal levels of cAMP in isolated pancreatic islets in young and old streptozotoein-diabetic rats. 6) The in virro study of CAMP content in pancreatic islets of young and old rats and its ellect on glucose induced insulin secretion. 7) 'lhe in vitro study on the involvement of dopamine and corticosteroids in glucose induced insulin secretion in pancreatic islets as a function of age.
Resumo:
Sympathetic stimulation inhibits insulin secretion. a2-Adrenergic receptor is known to have a regulatory role in the sympathetic function. We investigated the changes in the a2-adrenergic receptors in the brain stein and pancreatic islets using [3H]Yohimbine during pancreatic regeneration in weanling rats. Brain stem and pancreatic islets of experimental rats showed a significant decrease (p<0.001) in norepinephrine (NE) content at 72 h after partial pancreatectomy. The epinephrine (EPI) content showed a significant decrease (p<0.001) in pancreatic islets while it was not detected in brain stem at 72 h after partial pancreatectomy. Scatchard analysis of [3H]Yohimbine showed a significant decrease (p<0.05) and Kd at 72 h after partial pancreatectomy in the brain stem. In the pancreatic islets, Scatchard analysis of [3H]Yohimbine showed a signiinfiBca'nnatx decrease (p<0.001) in B,nax and Kd (p<0.05) at 72 h after partial pancreatectomy. The binding parameters reversed to near sham by 7 days after pancreatectomy both in brain stein and pancreatic islets. This shows that pancreatic insulin secretion is influenced by central nervous system inputs from the brain stem. In vitro studies with yohimbine showed that the a2-adrenergic receptors are inhibitory to islet DNA synthesis and insulin secretion. Thus our results suggest that decreased a2-adrenergic receptors during pancreatic regeneration functionally regulate insulin secretion and pancreatic 13-cell proliferation in weanling rats.
Resumo:
The brain stems (13S) of streptozotocin (STZ)-diabetic rats were studied lo see the changes in neurotransmitter content and their receptor regulation. The norepinephrine (NE) content determined in the diabetic brain stems did ^ control. an E showed la while PI turnover hri content increased significantly compared N^r eNveFa o the recep significant increase. The alpha2 adrenergic receptor IneP utisoulinntreat d ratsetheNE contentt dec^ sled was significantly reduced during diabetes. in versedcto reanorm sed ulcrea e tK reatment the state. while EPI content remained increased as in die diabetic B,, for a]pha2 adrenergic receptors slw^nificantly while Unlabelled clonidine inhibited [31-I]NE binding in BS of control, diabetic and insulin treated ulations bindi diabetic rats showed that alpha2 adrenergicre^ punks cojnidiabetic animal the ligand bound sites with Hill slopes significantly away from unity. weaker to the low affinity site than in controls. Insulin treatment reversed[ this allumbmn to control levels. The displacement analysis using (-)-epinephrine age in control and diabetic animals revealed two populations of receptor affinidtyo=tat ss. In control animals, when GTP analogue added with epinephrine, the curve nagnlde caofnfitnroit yS model; but in the diabetic BS this effect `not aobserved. In bintact oth the diabetic data thus showlthat the effects of monovalent cations on affinity alphaz adrenergic receptors have a reduced affinity v due in stem ialtered Itscppeomson(5- regulation. The serotonin (5-HT) coat hydroxy) tryptophan (5-HTP) showed an increase and its breakdown metabolite (5-hydroxy) indoleacetic acid (5-I{IAA) showed a significant decrease. This showed that in serotonergic which l nerves there is a disturbance in both synthetic and breankduomwnbers pretma'med ana increased 5-HT. The high affinity serotonin receptor um ese serotonerg decrease in the receptor affinity. The insulin ^treatmentsturtiy showsha decreased serotonergic receptor kinetic parameters to control level. receptor function. These changes in adrenergic and serotonergic receptor function were suggested to be important in insulin function during STZ diabetes.
Resumo:
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-l-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (K) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.
Resumo:
The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.
Resumo:
Dopamine D2 receptors are involved in ethanol self- administration behavior and also suggested to mediate the onset and offset of ethanol drinking. In the present study, we investigated dopamine (DA) content and Dopamine D2 (DA D2) receptors in the hypothalamus and corpus striatum of ethanol treated rats and aldehyde dehydrogenase (ALDH) activity in the liver and plasma of ethanol treated rats and in vitro hepatocyte cultures. Hypothalamic and corpus striatal DA content decreased significantly (P\0.05, P\0.001 respectively) and homovanillic acid/ dopamine (HVA/DA) ratio increased significantly (P\0.001) in ethanol treated rats when compared to control. Scatchard analysis of [3H] YM-09151-2 binding to DA D2 receptors in hypothalamus showed a significant increase (P\0.001) in Bmax without any change in Kd in ethanol treated rats compared to control. The Kd of DA D2 receptors significantly decreased (P\0.05) in the corpus striatum of ethanol treated rats when compared to control. DA D2 receptor affinity in the hypothalamus and corpus striatum of control and ethanol treated rats fitted to a single site model with unity as Hill slope value. The in vitro studies on hepatocyte cultures showed that 10-5 M and 10-7 M DA can reverse the increased ALDH activity in 10% ethanol treated cells to near control level. Sulpiride, an antagonist of DA D2, reversed the effect of dopamine on 10% ethanol induced ALDH activity in hepatocytes. Our results showed a decreased dopamine concentration with enhanced DA D2 receptors in the hypothalamus and corpus striatum of ethanol treated rats. Also, increased ALDH was observed in the plasma and liver of ethanol treated rats and in vitro hepatocyte cultures with 10% ethanol as a compensatory mechanism for increased aldehyde production due to increased dopamine metabolism. A decrease in dopamine concentration in major brain regions is coupled with an increase in ALDH activity in liver and plasma, which contributes to the tendency for alcoholism. Since the administration of 10-5 M and 10-7 M DA can reverse the increased ALDH activity in ethanol treated cells to near control level, this has therapeutic application to correct ethanol addicts from addiction due to allergic reaction observed in aldehyde accumulation.
Resumo:
Department of Biotechnology, Cochin University of Science and Technology
Resumo:
The present study was designed to investigate the protective effect of glucose, oxygen and epinephrine resuscitation on impairment in the functional role of GABAergic, serotonergic, muscarinic receptors, PLC, BAX, SOD, CAT and GPx expression in the brain regions of hypoxia induced neonatal rats. Also, the role of hormones - Triiodothyronine (T3) and insulin, second messengers – cAMP, cGMP and IP3 and transcription factors – HIF and CREB in the regulation of neonatal hypoxia and its resuscitation methods were studied. Behavioural studies were conducted to evaluate the motor function and cognitive deficit in one month old control and experimental rats. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The sequence of glucose, epinephrine and oxygen administration at the molecular level is an important aspect of the study. The additive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures by initial supply of glucose to hypoxic neonatal rats showed from the molecular study when brought to practice will lead to healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.
Resumo:
Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.
Resumo:
The onset of spontaneous seizures triggers a cascade of molecular and cellular events that eventually leads to neuronal injury and cognitive decline. The present study investigated the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring behavioural deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. The subdued performance in behavioural tests shows impaired motor coordination and memory. Histopathological investigations revealed significant neuronal loss in hippocampus of epileptic rats indicating glutamate mediated excitotoxicity. The treatment with WS and WA restored behavioural deficit and ameliorated neuronal loss. An altered redox homeostasis leading to oxidative stress is a hallmark of TLE. The antioxidant potential was afflicted in epileptic rats, evident from altered activity of SOD and CAT, down regulation of SOD and GPX expression and enhanced lipid peroxidation. The antioxidant property of WS and WA restored altered antioxidant capacity. Alteration in GDH activity and down regulation of GLAST expression resulted in enhanced glutamate content in the brain regions. The metabolism of glutamate was altered in the form of down regulated GAD expression. The alteration in synthesis, transport and metabolism resulted in further increase of the glutamate concentration at the synapse leading to glutamate mediated excitotoxicity. The decreased NMDA and AMPA receptor binding and down regulated NMDA R1, NMDA 2B and AMPA (GluR2) mRNA expression indicated altered glutamergic receptor function. The treatment with WS and WA reversed altered glutamergic receptor function, synthesis, transport and metabolism. The enhanced levels of second messenger IP3 responsible for Ca2+ mediated toxicity was reversed after treatment with WS and WA. Neurotoxics concentration of glutamate resulted in up regulation of pro apoptotic factors Bax and Caspase 8 and down regulation of anti apoptotic factor Akt resulting in neuronal death. The treatment with WS and WA resulted in activation of Akt and down regulation of Bax and caspase 8 leading to blocking of apoptotic pathway. The treatment with WS and WA resulted in reduced seizure frequency and amelioration of associated alterations suggesting the therapeutic role of Withania somnifera in temporal lobe epilepsy
Resumo:
Recent studies have established a fimctional correlation of serotonergic and adrenergic function in the brain regions with insulin secretion in diabetic rats (Vahabzadeh et al., 1995). Administration of 5-HT”. agonist 8-OH-DPAT to conscious rats caused an increase in blood glucose level. This increase in blood glucose is due to inhibition of insulin secretion by increased circulating EPI (Chaouloff et al., 1990a; Chaouloff et al., 1990d; Chaoulo1T& Jeanrenaud, 1987). The increase in EPI is brought about by increased sympathetic stimulation. This increase can lead to increased sympatho-medullary stimulation thereby inhibiting insulin release (Bauhelal & Mir, 1993, Bauhelal & Mir, 1990a; Chaouloffet al., 1990d). Also, studies have shown that Gi protein in the liver has been decreased in diabetes which will increase gluconeogenesis and glycogenolysis thereby causing hyperglycaemia (Pennington, 1987). Serotonergic control is suggested to exert different effects on insulin secretion according to the activation of different receptor subclasses (Pontiroli et al., 1975). In addition to this mechanism, the secretion of insulin is dependent on the turnover ratio of endogenous 5-hydroxy tryptophan (5-HTP) to 5-HT in the pancreatic islets (Jance er al., 1980). The reports so far stated does not explain the complete mechanism and the subclass of 5-HT receptors whose expression regulate insulin secretion in a diabetic state. Also, there is no report of a direct regulation of insulin secretion by 5-HT from the pancreatic islets even though there are reports stating that the pancreatic islets is a rich source of 5-HT (Bird et al., 1980). Therefore, in the present study the mechanism by which 5-HT and its receptors regulate insulin secretion from pancreatic [3-cells was investigated. Our results led to the following hypotheses by which 5-HT and its receptors regulate the insulin secretion.