2 resultados para Bound states

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis quark-antiquark bound states are considered using a relativistic two-body equation for Dirac particles. The mass spectrum of mesons includes bound states involving two heavy quarks or one heavy and one light quark. In order to analyse these states within a unified formalism, it is desirable to have a two-fermion equation that limits to one body Dirac equation with a static interaction for the light quark when the other particle's mass tends to infinity. A suitable two-body equation has been developed by Mandelzweig and Wallace. This equation is solved in momentum space and is used to describe the complete spectrum of mesons. The potential used in this work contains a short range one-gluon exchange interaction and a long range linear confining and constant potential terms. This model is used to investigate the decay processes of heavy mesons. Semileptonic decays are more tractable since there is no final state interactions between the leptons and hadrons that would otherwise complicate the situation. Studies on B and D meson decays are helpful to understand the nonperturbative strong interactions of heavy mesons, which in turn is useful to extract the details of weak interaction process. Calculation of form factors of these semileptonic decays of pseudo scalar mesons are also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 1931 Dirac studied the motion of an electron in the field of a magnetic monopole and found that the quantization of electric charge can be explained by postulating the mere existence of a magnetic monopole. Since 1974 there has been a resurgence of interest in magnetic monopole due to the work of ‘t’ Hooft and Polyakov who independently observed that monopoles can exist as finite energy topologically stable solutions to certain spontaneously broken gauge theories. The thesis, “Studies on Magnetic Monopole Solutions of Non-abelian Gauge Theories and Related Problems”, reports a systematic investigation of classical solutions of non-abelian gauge theories with special emphasis on magnetic monopoles and dyons which possess both electric and magnetic charges. The formation of bound states of a dyon with fermions and bosons is also studied in detail. The thesis opens with an account of a new derivation of a relationship between the magnetic charge of a dyon and the topology of the gauge fields associated with it. Although this formula has been reported earlier in the literature, the present method has two distinct advantages. In the first place, it does not depend either on the mechanism of symmetry breaking or on the nature of the residual symmetry group. Secondly, the results can be generalized to finite temperature monopoles.