8 resultados para Bottom grab (Petterson)
em Cochin University of Science
Resumo:
Variations of the infaunal polychates populations due to bottom trawling were studied during December 2000 to November 2002 at depth ranging from 0-50 m along Cochin-Munambam area (Kerala, long. 76degree10'94" to 75degree 56' and lat.9degree58' to 10degree10'), in the southwest coast of India.Infaunal polychaetes from the sediment samples were collected both before and after experimental trawling in order to assess the variations on their abundance (no.m-2),biomass(g.m-2) and diversity due to bottom trawling .Highest variations in polychaetes were recorded at station 9 in May 2002 where polychaete abundance increased to 20710 no.m-2 after trawling from 2787 no.m-2 before trawling.Biomass showed highest variations at station 3 in December 2000 where biomass increased from 7.16g.m-2 recorded before trawling to 34.53 g.m-2 in the samples collected after trawling .Multivariate community analysis carried out based on both species abundance and biomass of plychaetes also confirm the wide variations in the similarities of the stations comparing both before and after trawling
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
Bottom trawling is one among the most destructive human induced physical disturbances inflicted to seabed and its living communities. The bottom trawls are designed to tow along the sea floor, which on its operation indiscriminately smashes everything on their way crushing, killing, burying and exposing to predators the benthic fauna. Bottom trawling causes physical and biological damages that are irreversible, extensive and long lasting. The commercial trawling fleet of India consists of 29,241 small and medium-fishing boats. The northwest coast of India has the largest fishing fleet consisting of 23,618 mechanized vessels, especially the bottom trawlers. However, attempts were not made to study the impact of bottom trawling along Northwest coast of India. The estimated optimum fleet size of Gujarat is 1,473 mechanised trawlers while 7402 commercial trawlers are operated from the coast of Gujarat. Veraval port was designed initially for 1,200 fishing trawlers but 2793 trawlers are being operated from this port making it the largest trawler port of Gujarat. The aim of this study was to investigate the effects of bottom trawling on the substratum and the associated benthic communities of commercial trawling grounds of Veraval coast. The study compared the differences between the samples collected before and after experimental trawling to detect the impacts of bottom trawling. Attempts were made to assess the possible impact of bottom trawling on:(i) the sediment characteristics (ii)the sediment heavy metals (iii) epifauna (iv) macrobenthos and (v) meiobenthos. This study is expected to generate information on trawling impacts of the studied area that will help in better management of the biological diversity and integrity of the benthic fauna off Veraval coast. An exhaustive review on the studies conducted around the world and in India on impact of bottom trawling on the benthic fauna is also detailed.In the present study, the bottom trawling induced variations on sediment organic matter, epifauna, macrobenthos and meiobenthos were evident. It was also observed that the seasonal/ natural variations were more prominent masking the trawling effect on sediment texture and heavy metals. Enforcement of control of excess bottom trawlers and popularization of semi pelagic trawls designed to operate a little distance above the sea bottom for off bottom resources will minimize disturbance on the sea bottom. Training and creating awareness in responsible fishing should be made mandatory requirements, to the coastal communities. They should be made wardens to protect the valuable resources for the benefit of sustainability. To protect the biodiversity and ecosystem health, the imminent need is to survey and make catalogue, identification of sensitive areas or hot spots and to adopt management strategies for the conservation and biodiversity protection of benthic fauna. The present study is a pioneering work carried out along Veraval coast. This thesis will provide a major fillip to the studies on impact of bottom trawling on the benthic fauna along the coast of India.
Resumo:
There is very little information on the subtidal bottom fauna of the shelf regions in the seas around India. What little is known is restricted to macro benthos. The paucity of the work on bottom fauna and the importance of mud banks in the fishery of the South West Coast of India has initiated the present study. Attempts have been made to obtain a picture of the bottom fauna of a mud bank region of the Kerala Coast. The difficulties involved in the sampling and analysis, especially the availability of a suitable vessel during the S.W. Monsoon, resulted in the work being restricted mainly to the Narakal mud bank region 6 Km. north of Cochin Detailed sampling is conducted using grab, dredge and to a small extent beam trawl, to assess the qualitative and quantitative nature of the macro benthos. Important species contributing to the fauna are identified and the standing crop estimated for different seasons. The meiobenthos was studied using core samples taken from the grab. Animals were identified to the major taxa. Standing crop of meiobenthos and the quantitative importance of different groups were also studied. The data collected have been interpreted and discussed. As an understanding of the physico-chemical aspects of the environment is essential in order to obtain a true picture of the benthos, attempts were made in this direction. Environmental parameters such as temperature of the sediment, salinity, temperature, and dissolved oxygen in the overlying water were studied .during the period of benthos investigation. Monthly observations on the dissolved inorganic and organic phosphorus in the area of investigation have been made. The physico-chemical nature of the sediment was also studied. Influence of these ecological variables on the bottom fauna is discussed.
Resumo:
The present investigations confine to a study of the distribution of foraminifera in the estuarine environment and the interstial area of the sandy beaches of the south west coast of India with a view to correlate the distribution and the intensity of occurrence of the various species with hydrographic conditions and the substrate characteristics of the area. Studies on the foraminifera of the estuarine environment were carried out in the vembanad lake ,a major estuary in the south west coast of india extending for about 60km from cochin barmouth in the north to Alleppey in the south.Fortnightly collections of hydrographical data and grab samples of bottom deposit were made for a period of 2 years (july 1973 to june 1975) from fifteen stations chosen along the length of the lake.
Resumo:
Mechanized fishing started in Indian waters in mid —fifties and large-scale operation of trawl fishing began in the mid sixties by the surfeit of individual entrepreneurs. The southwest coast of India especially the coastal waters of Kerala are the most productive area in the subcontinent and the state has been in the forefront in marine fish production (Kurup, 2001a). Though the coastline of Kerala is one tenth of the coastline of India, the state occupies the foremost position in the marine fish production of the country, accounting for more than 30% of the marine fish landings (Thomas, 2000). The coastal waters of Kerala have rich and diversified fishery resources, which are prone to heavy exploitation by a unprecedently high number of fishing gears, among them, mechanized bottom trawlers with a numerical strength of 4550 (Kurup, 2001a) against the permissible number of 1145 (Kalawar, et al., 1985) are the most destructive. Trawling operations during monsoon periods in Kerala has been a subject of controversy between traditional fishermen and trawl fishers on a subject that trawl fishing destroys large amount of juveniles and young ones of fishes since this period is the major breeding season of most of the fish and prawns (John, 1996). Therefore Government of Kerala imposed a ban on bottom trawling activities from 1988 onwards for a period varying from 21-70 days, which usually commences from June 15th. Though many studies revealed that large amount of non-target groups were destroyed in the commercial trawl fishing in the Indian waters, no concerted study has been conducted so far to evaluate the real impact of bottom trawling on the sea bottom and its living communities. The present study was conducted to assess the impact of excessive bottom trawling exerted on the sea bottom habitat and its living communities, which would be useful in impressing up on the seriousness of habitat degradation and biotic devastation, enabling the concerned to adopt relevant conservation and management steps to conserve the resources for sustainable exploitation
Resumo:
Hydrographic characteristics of the southwest coast of India and its adjoining Cochin backwaters (CBW) were studied during the summer monsoon period. Anomalous formation of anoxia and denitrification were observed in the bottom layers of CBW, which 5 have not been previously reported elsewhere in any tropical estuarine systems. The prevalent upwelling in the Arabian Sea (AS) brought cool, high saline, oxygen deficient and nutrient-rich waters towards the coastal zone and bottom layers of CBW during the high tide. High freshwater discharge in the surface layers brought high amount of nutrients and makes the CBW system highly productive. Intrusion of AS waters seems 10 to be stronger towards the upstream end ( 15 km), than had been previously reported, as a consequence of the lowering of river discharges and deepening of channels in the estuary. Time series measurements in the lower reaches of CBW indicated a low mixing zone with increased stratification, 3 h after the high tide (highest high tide) and high variation in vertical mixing during the spring and neap phases. The upwelled waters 15 (O2 40 μM) intruded into the estuary was found to lose more oxygen during the neap phase (suboxic O2 4 μM) than spring phase (hypoxic O2 10 μM). Increased stratification coupled with low ventilation and presence of high organic matter have resulted in an anoxic condition (O2 = 0), 2–6 km away from barmouth of the estuary and leads to the formation of hydrogen sulphide. The reduction of nitrate and formation of nitrite 20 within the oxygen deficient waters indicated strong denitrification intensity in the estuary. The expansion of oxygen deficient zone, denitrification and formation of hydrogen sulphide may lead to a destruction of biodiversity and an increase of green house gas emissions from this region