2 resultados para Block Detection

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of microcalcifications in mammograms can be considered as an early indication of breast cancer. A fastfractal block coding method to model the mammograms fordetecting the presence of microcalcifications is presented in this paper. The conventional fractal image coding method takes enormous amount of time during the fractal block encoding.procedure. In the proposed method, the image is divided intoshade and non shade blocks based on the dynamic range, andonly non shade blocks are encoded using the fractal encodingtechnique. Since the number of image blocks is considerablyreduced in the matching domain search pool, a saving of97.996% of the encoding time is obtained as compared to theconventional fractal coding method, for modeling mammograms.The above developed mammograms are used for detectingmicrocalcifications and a diagnostic efficiency of 85.7% isobtained for the 28 mammograms used.