10 resultados para Bhatt, Ramesh S

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis quark-antiquark bound states are considered using a relativistic two-body equation for Dirac particles. The mass spectrum of mesons includes bound states involving two heavy quarks or one heavy and one light quark. In order to analyse these states within a unified formalism, it is desirable to have a two-fermion equation that limits to one body Dirac equation with a static interaction for the light quark when the other particle's mass tends to infinity. A suitable two-body equation has been developed by Mandelzweig and Wallace. This equation is solved in momentum space and is used to describe the complete spectrum of mesons. The potential used in this work contains a short range one-gluon exchange interaction and a long range linear confining and constant potential terms. This model is used to investigate the decay processes of heavy mesons. Semileptonic decays are more tractable since there is no final state interactions between the leptons and hadrons that would otherwise complicate the situation. Studies on B and D meson decays are helpful to understand the nonperturbative strong interactions of heavy mesons, which in turn is useful to extract the details of weak interaction process. Calculation of form factors of these semileptonic decays of pseudo scalar mesons are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis we have formulated the Dalgarno-Lewis procedure for two-and three-photon processes and an elegant alternate expressions are derived. Starting from a brief review on various multiphoton processes we have discussed the difficulties coming in the perturbative treatment of multiphoton processes. A small discussion on various available methods for studying multiphoton processes are presented in chapter 2. These theoretical treatments mainly concentrate on the evaluation of the higher order matrix elements coming in the perturbation theory. In chapter 3 we have described the use of Dalgarno-Lewis procedure and its implimentation on second order matrix elements. The analytical expressions for twophoton transition amplitude, two-photon ionization cross section, dipole dynamic polarizability and Kramers-Heiseberg are obtained in a unified manner. Fourth chapter is an extension of the implicit summation technique presented in chapter 3. We have clearly mentioned the advantage of our method, especially the analytical continuation of the relevant expressions suited for various values of radiation frequency which is also used for efficient numerical analysis. A possible extension of the work is to study various multiphoton processcs from the stark shifted first excited states of hydrogen atom. We can also extend this procedure for studying multiphoton processes in alkali atoms as well as Rydberg atoms. Also, instead of going for analytical expressions, one can try a complete numerical evaluation of the higher order matrix elements using this procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

School of Environmental Studies, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study described about the interaction of a two level atom and squeezed field with time varying frequency. By applying a sinusoidal variation in the frequency of the field, the randomness in population inversion is reduced and the collapses and periodic revivals are regained. Quantum optics is an emerging field in physics which mainly deals with the interaction of atoms with quantised electromagnetic fields. Jaynes-Cummings Model (JCM) is a key model among them, which describes the interaction between a two level atom and a single mode radiation field. Here the study begins with a brief history of light, atom and their interactions. Also discussed the interaction between atoms and electromagnetic fields. The study suggest a method to manipulate the population inversion due to interaction and control the randomness in it, by applying a time dependence on the frequency of the interacting squeezed field.The change in behaviour of the population inversion due to the presence of a phase factor in the applied frequency variation is explained here.This study also describes the interaction between two level atom and electromagnetic field in nonlinear Kerr medium. It deals with atomic and field state evolution in a coupled cavity system. Our results suggest a new method to control and manipulate the population of states in two level atom radiation interaction,which is very essential for quantum information processing.We have also studied the variation of atomic population inversion with time, when a two level atom interacts with light field, where the light field has a sinusoidal frequency variation with a constant phase. In both coherent field and squeezed field cases, the population inversion variation is completely different from the phase zero frequency modulation case. It is observed that in the presence of a non zero phase φ, the population inversion oscillates sinusoidally.Also the collapses and revivals gradually disappears when φ increases from 0 to π/2. When φ = π/2 the evolution of population inversion is identical to the case when a two level atom interacts with a Fock state. Thus, by applying a phase shifted frequency modulation one can induce sinusoidal oscillations of atomic inversion in linear medium, those normally observed in Kerr medium. We noticed that the entanglement between the atom and field can be controlled by varying the period of the field frequency fluctuations. The system has been solved numerically and the behaviour of it for different initial conditions and different susceptibility values are analysed. It is observed that, for weak cavity coupling the effect of susceptibility is minimal. In cases of strong cavity coupling, susceptibility factor modifies the nature in which the probability oscillates with time. Effect of susceptibility on probability of states is closely related to the initial state of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenic microorganisms such as Bacillus cereus, Listeria Monocytogenes and Staphylococcus sp have caused serious diseases, and consequently contributed to considerable economic loss in the food and agricultural industries. Antibiotics have been practically used to treat these pathogens since penicillin G was discovered more than half a century ago. Many different types of antibiotics have been discovered or synthesized to control pathogenic microorganisms. Repetitive use and misuse of antibiotics by the agricultural and pharmaceutical industries have caused the emergence of multidrug-resistant microorganisms, even to the strongest antibiotics currently available; therefore, the rapid development of more effective antimicrobial compounds is required to keep pace with demand. Bacteria were isolated from marine water and sediment samples collected from various locations off the coast of Cochin and salt pans of Tuticorin using pour plate technique. One hundred and twelve isolates were obtained. Seventeen isolates exhibiting antimicrobial activity were segregated after primary screening. The secondary screening which was aimed at selection of bacteria that produce proteinaceous inhibitory compounds, helped to select five strains viz. BTFK101, BTHT8, BTKM4, BTEK16 and BTSB22. The five isolates inhibited the growth of six Gram positive test organisms viz. B. cereus, B. circulans, B. coagulans, B. pumilus, Staphylococcus aureus and Clostridium perfringens. After quantitative estimation of the bacteriocin production, the two strains BTFK101 and BTHT8 were selected for further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil community genomics or metagenomics is employed in this study to analyze the evolutionary related - ness of mangrove microbial community. The metagenomic DNA was isolated from mangrove sediment and 16SrDNA was amplified using universal primers. The amplicons were ligated into pTZ57R/T cloning vector and transformed onto E. coli JM109 host cells. The recombinant plasmids were isolated from positive clones and the insert was confirmed by its reamplification. The amplicons were subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) using three different tetra cutter restriction enzymes namely Sau3A1, Hha1 and HpaII. The 16SrDNA insert were sequenced and their identity was determined. The sequences were submitted to NCBI database and accession numbers obtained. The phylo - genetic tree was constructed based on Neighbor-Joining technique. Clones belonged to two major phyla of the bacterial domain, namely Firmicutes and Proteobacteria, with members of Firmicutes predominating. The microbial diversity of the mangrove sediment was explored in this manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory Division Department of Physics