8 resultados para Band-stop filters (BSF)
em Cochin University of Science
Resumo:
A novel compact chipless RFID tag using spurline resonators is discussed in this paper. The detection of the tag's ID is using the spectral signature of a spurline resonator circuit. The tag has a data capacity of 8-bits in the range 2.38 to 4.04 GHz. The tag consists of a spurline multiresonating circuit and two cross polarized antennas. The prototype of the tag is fabricated on a substrate CMET/ LK4.3 of dielectric constant 4.3 and loss tangent 0.0018. The measured results show that group delay response can also be used to decode the tag’s identity
Resumo:
Division of Electronics Engineering
Resumo:
In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method
Resumo:
Study of the characteristics of planar loop resonators and their use in the construction of filters at microwave frequencies are presented in this thesis.A detailed investigation of parameters affecting the strength of coupling and the resonant frequency are also carried out .Techniques for size reduction in bandstop and bandpass filters using planar loop resonators are developed.Different configurations of bandstop and bandpass filters using loop resonators are simulated and experimental results on optimal filter configurations are presented.
Resumo:
In this paper, microstrip lines magnetically coupled to splitring resonators (SRRs) are conquved to electromagnetic bundgup (EBG) nr,rrostrip lines in terns q/ their stop-heard penjbrnmrnce and dimensions. In bath types o/ trunsmis•siou lines, signal propagation is inhibited in it certain jequency bwuL For EBG microstrip lines, the central frequency of such a forbidden band is determined by the period of the structure, whereas in SRR-hased microstrip lines the position of the frequency gap depends on the quasi-static resonant frequency of the rings. The main relevant conrributiun of this paper is to provide a tuning procedure to control the gap width in SRR microstrip lines, and to show that by using SRRs, device dimensions ale much smaller than those required by EBGs in order to obtain similar stop-banal performance. This has been demonstrated by fill-wave electromagnetic simulations and experimentally verified from the characterization ql two fabricated microstrip lines: one with rectangular SRRs etched on the upper substrate side, and the other with a periodic perturbation cf'strip width. For similar rejection and 1-(;H,. gap width centered at 4.5 Gllz, it has been found that the SRR microstrip line is•,fve times shorter. In addition, no ripple is appreciable in the allowed band for the .SRR-hared structure, whereas due to dispersion, certain mismatch is expected in the EBG prototype. Due to the high-frequency selectivity, controllable gap width, and small dimensions, it is believed that SRR coupled to planar transmission lines can have an actual impact on the design of stop-band filters compatible with planar technology, and can be an alternative to present solutions based on distributed approaches or EBG
Resumo:
Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.
Resumo:
The paper presents a compact planar Ultra Wide Band ¯lter employing folded stepped impedance resonators with series capacitors and dumb bell shaped defected ground structures. An interdigital quarter wavelength coupled line is used for achieving the band pass characteristics. The transmission zeros are produced by stepped impedance resonators. The ¯lter has steep roll o® rate and good attenuation in its lower and upper stop bands, contributed by the series capacitor and defected ground structures respectively.
Resumo:
The paper presents a maximally flat compact planar filter employing folded Stepped Impedance Resonators (SIR) and Complementary Split Ring Resonators (CSRR), for Ultra Wide Band (UWB) applications. An interdigital quarter wavelength coupled line is used for achieving the band pass characteristics. The filter has low insertion loss in its pass band and steep roll off rate and good attenuation in its lower and upper stop bands. The measured microwave characteristics of the fabricated filter show good agreement with the simulated response