23 resultados para Bacterial Adhesion
em Cochin University of Science
Resumo:
The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.
Resumo:
In natural systems phytoplankton interact with planktonic (free living) and attached epiphytic bacteria both synergistically and antagonistically. The specificity of the association with micro algae and bacteria differs in terms of adhesion mechanisms and metabolic cooperation. Present research was carried out to study the effect of bacterial isolates namely Bacillus sp. and Pseudomonas sp. from algal culture systems on the growth of micro algae such as Chaetoceros calcitrans and Nannochloropsis oculata. C. calcitrans (F= 15.34; P<0.05) and N. oculata (F=12.52; P<0.05) showed significantly higher growth, in treatments with Bacillus sp. and Pseudomonas sp when compared to control.
Resumo:
The self adhesion behaviour of thermoplastic polyurethane (TPU) in itself and its composite with short Kevlar fibre with respect to contact time, temperature, pressure, and fibre loading has been studied. The adhesion strength showed two linear increments of different slopes with respect to the square root of time: with temperature and pressure of contact, the adhesion strength was improved. The maximum strength was obtained with 20 phr of short fibre in only one of the mating substrates in the peel test sample. The duration for wetting and diffusion was shifted to longer time intervals with fibres loaded in both the substrates.
Resumo:
The growth kinetics of an aerial bacterial colony on solid agar media was studied using laser induced fluorescence technique. Fluorescence quenching of Rhodamin B by the bacterial colony was utilized for the study. The lag phase, log phase, and stationary phase of growth curve of bacterial colony was identified by measuring peak fluorescence intensity of dye doped bacterial colony.
Resumo:
School of Environmental Studies, Cochin University of Science and Technology
Resumo:
Xylanases with hydrolytic activity on xylan, one of the hemicellulosic materials present in plant cell walls, have been identified long back and the applicability of this enzyme is constantly growing. All these applications especially the pulp and paper industries require novel enzymes. There has been lot of documentation on microbial xylanases, however, none meeting all the required characteristics. The characters being sought are: higher production, higher pH and temperature optima, good stabilities under these conditions and finally the low associated cellulase and protease production. The present study analyses various facets of xylanase biotechnology giving emphasis on bacterial xylanases. Fungal xylanases are having problems like low pH values for both enzyme activity and growth. Moreover, the associated production of cellulases at significant levels make fungal xylanases less suitable for application in paper and pulp industries.Bacillus SSP-34 selected from 200 isolates was clearly having xylan catabolizing nature distinct from earlier reports. The stabilities at higher temperatures and pH values along with the optimum conditions for pH and temperature is rendering Bacillus SSP-34 xylanase more suitable than many of the previous reports for application in pulp and paper industries.Bacillus SSP-34 is an alkalophilic thertmotolerant bacteria which under optimal cultural conditions as mentioned earlier, can produce 2.5 times more xylanase than the basal medium.The 0.5% xylan concentration in the medium was found to the best carbon source resulting in 366 IU/ml of xylanase activity. This induction was subjected to catabolite repression by glucose. Xylose was a good inducer for xylanase production. The combination of yeast extract and peptone selected from several nitrogen sources resulted in the highest enzyme production (379+-0.2 IU/ml) at the optimum final concentration of 0.5%. All the cultural and nutritional parameters were compiled and comparative study showed that the modified medium resulted in xylanase activity of 506 IU/ml, 5 folds higher than the basal medium.The novel combination of purification techniques like ultrafiltraton, ammonium sulphate fractionation, DEAE Sepharose anion exchange chromatography, CM Sephadex cation exchange chromatography and Gel permeation chromatography resulted in the purified xylanase having a specific activity of 1723 U/mg protein with 33.3% yield. The enzyme was having a molecular weight of 20-22 kDa. The Km of the purified xylanase was 6.5 mg of oat spelts xylan per ml and Vmax 1233 µ mol/min/mg protein.Bacillus SSP-34 xylanase resulted in the ISO brightness increase from 41.1% to 48.5%. The hydrolytic nature of the xylanase was in the endo-form.Thus the organism Bacillus SSP-34 was having interesting biotechnological and physiological aspects. The SSP-34 xylanase having desired characters seems to be suited for application in paper and pulp industries.
Resumo:
The thesis is Studies on the Effect or the Obganophosphorus Pesticide Ekalux(R) EC 25 on the Bacterial Flora or Villorita Cyprinoides Var.Cochinensis (Hanley). For the present investigation, the black clam Villorita gyprinoides var. cochinensis (Hanley), a most common clam genus present in this estuarine system has been selected as test organaism and Ekalux (R) EC 25 as toxicant. The aspects dealt with are 1. Total heterotrophic bacterial population, 2. Generic composition, 3. Hydrolytic enzyme producing bacteria, 4. Antibiotic resistance, 5. Heavy metal resistance, 6. The effect of pesticide concentration on the growth of the bacteria and 7. Effect of temperature, pH and sodium chloride on the growth and phosphate release of selected isolates.The samples for the experiment were collected from the Vembanad Lake, near Kumbalam Island during the period of September 1985 to May '86. The THB of the estuarine water and clams contained 6.5 x I04/ml and 2.975 x l06/g respectively, immediately after collection. Untreated water and clam samples showed enormous increase in THB from 0 hr population. The treated samples (water and clams) contained higher THB than 0 hr. In general, THB was observed to increase tremendously in the samples treated with pesticide when compared to their native flora. With reference to various concentrations of pesticides, THB recorded an increase with increase of concentration in water and clam samples.
Resumo:
The principal interest of the present investigation was to determine seasonal and vertical variation of chemoorganotrophic utilisation of glucose and sodium—acetate by the natural bacterial population in the aquaculture pond of Narakkal, Cochin using techniques which allow maintenance of the in situ gaseous concentrations during incubation. In addition salinity, dissolved oxygen, temperature, hydrogen—ion—.concentration, primary production, plant pigments and total bacterial concentration were determined seasonally and vertically because of their possible relationship to chemoorganotrophy.
Resumo:
Cochin, commercial capital of Kerala, located on the west-coast of South India has a large number of chemical and sea food industries. Earlier studies in the past indicated that these industries contribute to heavy metal pollution, particularly mercury, copper, and cadmium, in Cochin backwater. Hence, in the present study, it was desired to isolate cadmium resistant bacteria from effluent discharged by chemical industry with a view to develop an ideal bioremediation process for safe discharge of industrial effluent in to the nearby aquatic environment. Effluent from three industries, located in the industrial belt of Cochin, were collected from the discharge point and cadmium resistant bacteria were screened using standard microbiological techniques
Resumo:
Microbiological studies on the incidence, behaviour, activity and ecological implications of marine micro~organisms, particularly microbial pathogens in coastal waters and estuaries exhibit the increasing concern and awareness of environmental impacts on health and wealth. Marine microbiologists have been active in investigating on the distribution, kinds of organisms and their activity in the environment. However, informations on the effect of environment on the ecology or on the distribution (spatial/temporal) of microbial comunity and competition among groups inhabiting the ecosystem are sparE§L Estuarine environment are complex with respect to diversity of habitats, variation in physicochemical parameters and contamination by terrestrial bacterial species. Being the organisms of‘public health significance, ecological studies on total coliforms, faecal coliforms, faecal streptococci, §. ggli and X. parahaemolyticus have great relevance as studies of these types would provide a wealth of information to environmentalists and to fishery industry. In order to evalé%e the status, role and significance of potentially hazardous bacterial species in natural environment it is necessary to monitor the ecology of such organisms systematically in relation to physico-chemical parameters
Resumo:
Considering the extent of warming in the artic region and the resultant changes in the dynamic marine enviornments there is a need to monitor the bacterial diversity in the fjord enviornments especially in terms of cultivable bacteria. The present study reports the diversity of cultivable hetrotrophic bacteria from the water and sediment samples of kongsfjord their growth responses to important enviornmental variables and ability to produce industrially important hydrolytic enzymes.
Resumo:
Shrimp grow out systems under zero water exchange mode demand constant remediation of total ammonia nitrogen (TAN) andNO2 −–Nto protect the crop. To address this issue, aninexpensive and user-friendly technology using immobilized nitrifying bacterial consortia (NBC) as bioaugmentors has been developed and proposed for adoption in shrimp culture systems. Indigenous NBC stored at 4 °C were activated at room temperature (28 °C) and cultured in a 2 L bench top fermentor. The consortia, after enumeration by epifluorescence microscopy,were immobilized on delignifiedwood particles of a soft wood tree Ailantus altissima (300–1500 μm) having a surface area of 1.87m2 g−1. Selection of wood particle as substratumwas based on adsorption of NBC on to the particles, biofilm formation, and their subsequent nitrification potential. The immobilization could be achievedwithin 72 h with an initial cell density of 1×105 cells mL−1. On experimenting with the lowest dosage of 0.2 g (wet weight) immobilized NBC in 20 L seawater, a TAN removal rate of 2.4 mg L−1 within three days was observed. An NBC immobilization device could be developed for on site generation of the bioaugmentor preparation as per requirement. The product of immobilization never exhibited lag phase when transferred to fresh medium. The extent of nitrification in a simulated systemwas two times the rate observed in the control systems suggesting the efficacy in real life situations. The products of nitrification in all experiments were undetectable due to denitrifying potency, whichmade the NBC an ideal option for biological nitrogen removal. The immobilized NBC thus generated has been named TANOX (Total Ammonia Nitrogen Oxidizer)