38 resultados para Bacteria, Pyogenic.
em Cochin University of Science
Resumo:
The main objective of the work undertaken here was to develop an appropriate microbial technology to protect the larvae of M.rosenbergii in hatchery from vibriosis. This technology precisely is consisted of a rapid detection system of vibrios and effective antagonistic probiotics for the management of vibrios. The present work was undertaken with the realizations that to stabilize the production process of commercial hatcheries an appropriate, comprehensive and fool proof technology is required primarily for the rapid detection of Vibrio and subsequently for its management. Nine species of Vibrio have been found to be associated with larvae of M. rosenbergii in hatchery. Haemolytic assay of the Vibrio and Aeromonas on prawn blood agar showed that all isolates of V. alginolyticus and Aeromonas sp., from moribund, necrotized larve were haemolytic and the isolates of V.cholerae, V.splendidus II, V.proteolyticus and V.fluvialis from the larvae obtained from apparently healthy larval rearing systems were non-haemolytic. Hydrolytic enzymes such as lipase, chitinase and gelatinase were widespread amongst the Vibrio and Aeromonas isolates. Dominance of V.alginolyticus among the isolates from necrotic larvae and the failure in isolating them from rearing water strongly suggest that they infect larvae and multiply in the larval body and cause mortality in the hatchery. The observation suggested that the isolate V. alginolyticus was a pathogen to the larvae of M.rosenbergii. To sum up, through this work, nine species of Vibrio and genus Aeromonas associated with M.rosenbergii larval rearing systems could be isolated and segregated based on the haemolytic activity and the antibodies (PA bs) for use in diagnosis or epidemiological studies could be produced, based on a virulent culture of V.alginolyticus. This could possibly replace the conventional biochemical tests for identification. As prophylaxis to vibriosis, four isolates of Micrococcus spp. and an isolate of Pseudomonas sp. could be obtained which could possibly be used as antagonistic probiotics in the larval rearing system of M.rosenbergii.
Resumo:
Phosphate (Pi) is one among the most important essential residues in maintenance and inheritance of life, with far diverse physiological role as structural, functional and energy transduction. Phosphate accumulation in wastewaters containing run off of fertilizers and industrial discharges is a global problem that results in algal blooms in bays, lakes and waterways. Currently available methods for removing phosphates from wastewater are based primarily on polyP accumulation by the activated sludge bacteria. PolyP plays a critical role in several environmental and biotechnological problems. Possible relation of interaction between polyP accumulation phenomenon, the low biomass, low Pi uptake, and varying results obtained in response to the impact of sodium chloride, pH, temperature, various inorganic salts and additional carbon sources studied, are all intriguing observations in the present investigation. The results of the present study have evidenced very clearly the scope for potential strains of bacteria from both sea water and marine sediments which could be exploited both for Pi removal in wastewater released by industries and intensive aquaculture practices in to the aquatic environment as well as to harness the potential strains for industrial production of polyP which was wide range of applications.
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus smithii , and fibrin alginolvticus, a Gram- negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smithii was observed . The effect of dye on the samples was also studied in detail.
Resumo:
Heterotrophic bacterial flora of Pmonadon from an apparently healthy hatchery system as well as a pool with heavy mortality were isolated and studied. In the healthy systems comparatively higher generic diversity with Pseudomonas, Acinetobacter, Bacillus, Micrococcus, members of the family Enterobacteriaceae and coryneform group in the diminishing order of dominance was recorded. Meanwhile from the moribund larvae and rearing water Aeromonas and Pseudomonas could be isolated in almost equal proportions. Strikingly, Aeromonas could not be isolated from the apparently healthy larval rearing system and its exclusive occurrence in the sick culture system in comparatively higher percentage suggested its possible role in the mortality. They were found to be highly halophilic exhibiting growth at 10% NaCl. On testing their sensitivity to twenty antibiotics, four of them (Streptomycin, Gentamycin, Methamine mandelate and Cloramphenicol) were found to be effective on all the isolates of Aeromonas and Pseudomonas suggesting their possible application in the hatchery system in times of emergency. While doing so, Streptomycin would do comparatively better than the others as the minimum inhibitory dose required was comparatively lower (200ppm) within a period of 24 hours
Resumo:
This study aims to reveal the ability of bacteria isolated from Cochin estuary and the Arabian Sea to produce phosphatases, important characters of the enzymes, its ability to utilize organophosphorus compounds as source of phosphate and also their role in degradation of organophosphorus pesticides. It deals with isolation, identification and screening of bacteria for phosphatase production, and it describes the effect of cultural conditions on growth and phosphatase production. The effect of various factors like pH, NaCl concentration, temperature of incubation, carbon source, period of incubation etc. on growth and phosphatase production by the two selected species were studied to establish suitable environment for phosphatase production by these bacteria. In this study regulation of phosphatase synthesis, characteristics of acid and alkaline phosphatases are discussed.
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus .cmithii , and fibrin alginolvticus, a Gram-' negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smitltii was observed . The effect of dye on the samples was also studied in detail.
Resumo:
In this study, an attempt has been made to gather enough information regarding lactic acid bacteria from fish and shellfish of tropical regions. The occurrence and distribution of lactic acid bacteria in fresh and frozen marine fish and shellfish, farmed fish and shellfish, cured and pickled fish and shellfish have been investigated. Lactic Acid Bacteria (LAB) have for centuries been responsible for the fermentative preservation of many foods. They are used to retard spoilage and preserve foods through natural fermentations. They have found commercial applications as starter cultures in the dairy, baking, meat, fish, and vegetable and alcoholic beverage industries. They are industrially important organisms recognized for their fermentative ability as well as their nutritional benefits. These organisms produce various compounds such as organic acids, diacetyl, hydrogen peroxide and bacteriocins or bactericidal proteins during lactic fermentations.Biopreservation of foods using bacteriocin producing LAB cultures is becoming widely used. The antimicrobial effect of bacteriocins and other compounds produced during fermentation of carbohydrates are well known to inhibit the growth of certain food spoiling bacteria as well as a limited group of food poisoning and pathogenic bacteria LAB like Lactobacillus plantarum are widely used as starter cultures for the Production of fish ensilage. The present study is the first quantitative and qualitative study on the occurrence and distribution of lactic acid bacteria in fresh and frozen fish and prawn. It is concluded that Lactobacillus plantaruni was the predominant lactobacillus species in fresh and frozen fish and shellfish. The ability of selected Lactobacillus cultures to grow at low temperatures, high salt content, produce bacteriocins, rapidly ferment sugars and decrease the pH make them potential candidates for biopreservation of fish and shellfish.
Resumo:
The current study is an attempt to find a means of lowering oxalate concentration in individuals susceptible to recurrent calcium oxalate stone disease.The formation of renal stone composed of calcium oxalate is a complex process that remains poorly understood and treatment of idiopathic recurrent stone formers is quite difficult and this area has attracted lots of research workers. The main objective of this work are to study the effect of certain mono and dicarboxylic acids on calcium oxalate crystal growth in vitro, isolation and characterization of oxalate degrading bacteria, study the biochemical effect of sodium glycollate and dicarboxylic acids on oxalate metabolism in experimental stone forming rats and To investigate the effect of dicarboxylic acids on oxalate metabolism in experimental hyperoxaluric rats. Oxalic acid is one of the most highly oxidized organic compound widely distributed in the diets of man and animals, and ingestion of plants that contain high concentration of oxalate may lead to intoxication. Excessive ingestion of dietary oxalate may lead to hyperoxaluria and calcium oxalate stone disease.The formation of calcium oxalate stone in the urine is dependent on the saturation level of both calcium and oxalate. Thus the management of one or both of these ions in individuals susceptible to urolithiasis appears to be important. The control of endogenous oxalate synthesis from its precursors in hyperoxaluric situation is likely to yield beneficial results and can be a useful approach in the medical management of urinary stones. A variety of compounds have been investigated to curtain endogenous oxalate synthesis which is a crucial factor, most of these compounds have not proved to be effective in the in vivo situation and some of them are not free from the toxic effect. The non-operative management of stone disease has been practiced in ancient India in the three famous indigenous systems of medicine, Ayurveda, Unani and Siddha, and proved to be effective.However the efficiency of most of these substances is still questionable and demands further study. Man as well as other mammals cannot metabolize oxalic acid. Excessive ingestion of oxalic acid can arise from oxalate rich food and from its major metabolic precursors, glycollate, glyoxylate and ascorbic acid can lead to an acute oxalate toxicity. Increasedlevels of circulating oxalate, which can result in a variety of diseases including renal failure and oxalate lithiasis. The ability to enzymatically degrade oxalate to less noxious Isubstances, formate and CO2, could benefit a great number of individuals including those afflicted with hyperoxaluria and calcium oxalate stone disease.
Resumo:
Various compositions of linear low density polyethylene(LLDPE) containing bio-filler(either starch or dextrin)of various particle sizes were prepared.The mechanical,thermal,FTIR,morphological(SEM),water absorption and melt flow(MFI) studies were carried out.Biodegradability of the compositions were determined using a shake culture flask containing amylase producing bacteria(vibrios),which were isolated from marine benthic environment and by soil burial test. The effect of low quantities of metal oxides and metal stearate as pro-oxidants in LLDPE and in the LLDPE-biofiller compositions was established by exposing the samples to ultraviolet light.The combination of bio-filler and a pro-oxidant improves the degradation of linear low density polyethylene.The maleation of LLDPE improves the compatibility of the c blend components and thepro-oxidants enhance the photodegradability of the compatibilised blends.The responsibility studies on the partially biodegradable LLDPE containing bio-fillers and pro-oxidants suggest that the blends could be repeatedly reprocessed without deterioration in mechanical properties.
Resumo:
The thesis mainly discussed the isolation and identification of a probiotic Lactobacillus plantarum, fermentative production of exopolysaccharide by the strain, its purification, structural characterisation and possible applications in food industry and therapeutics. The studies on the probiotic characterization explored the tolerance of the isolated LAB cultures to acid, bile, phenol, salt and mucin binding. These are some of the key factors that could satisfy the criteria for probiotic strains . The important factors required for a high EPS production in submerged fermentation was investigated with a collection of statistical and mathematical approach. Chapter 5 of the thesis explains the structural elucidation of EPS employing spectroscopic and chromatographic techniques. The studies helped in the exploration of the hetero-polysaccharide sequence from L. plantarum MTCC 9510. The thesis also explored the bioactivities of EPS from L. plantarum. As majority of chemical compounds identified as anti-cancerous are toxic to normal cells, the discovery and identification of new safe drugs has become an important goal of research in the biomedical sciences. The thesis has explored the anti-oxidant, anti-tumour and immunomodulating properties of EPS purified from Lactobacillus plantarum. The presence of (1, 3) linkages and its molecular weight presented the EPS with anti-oxidant, anti-tumour and immunomodulating properties under in vitro conditions.