7 resultados para BWCTL Bandwidth Test Controller
em Cochin University of Science
Resumo:
A new method for enhancing the 2.1 VSWR impedance bandwidth of microstrip antennas is presented. Bandwidth enhancement is achieved by loading the microstrip antenna by a ceramic microwave dielectric resonator (DR). The validity of this technique has been established using rectangular and circular radiating geometries. This method improves the bandwidth of a rectangular microstrip antenna to more than 10% (= 5 times that of a conventional rectangular microstrip antenna) with an enhanced gain of I dB
Resumo:
A novel technique fitr the bat dividth enhancement of conventional rectangular microstrip antenna is proposed in this paper. When a high permittivity dielectric resonator of suitable resonant frequency was loaded over the patch. the % bandwidth of the antenna was increased by more than five tunes without much affecting its gain and radiation performance. A much more improved bandwidth was obtained when the dielectric resonator was placed on the feedline. Experimental study shows a 2:1 VSWR bandwidth of more than 10% and excellent cross polarization performance with increased pass band and radiation coverage abnost the same as that of rectangular microstrip antenna
Resumo:
The use of a split-ring resonator (SRR)-loaded waveguide for the design of a band-rejection filter with adjustable bandwidth is reported. The width of the stopband can be adjusted by suitably positioning the SRR array in the waveguide. The rejection band can be made very narrow by placing the array at the electric-field minimum. The stopband attenuation depends on the number of unit cells in the array.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
Code clones are portions of source code which are similar to the original program code. The presence of code clones is considered as a bad feature of software as the maintenance of software becomes difficult due to the presence of code clones. Methods for code clone detection have gained immense significance in the last few years as they play a significant role in engineering applications such as analysis of program code, program understanding, plagiarism detection, error detection, code compaction and many more similar tasks. Despite of all these facts, several features of code clones if properly utilized can make software development process easier. In this work, we have pointed out such a feature of code clones which highlight the relevance of code clones in test sequence identification. Here program slicing is used in code clone detection. In addition, a classification of code clones is presented and the benefit of using program slicing in code clone detection is also mentioned in this work.
Resumo:
Mobile Ad-hoc Networks (MANETS) consists of a collection of mobile nodes without having a central coordination. In MANET, node mobility and dynamic topology play an important role in the performance. MANET provide a solution for network connection at anywhere and at any time. The major features of MANET are quick set up, self organization and self maintenance. Routing is a major challenge in MANET due to it’s dynamic topology and high mobility. Several routing algorithms have been developed for routing. This paper studies the AODV protocol and how AODV is performed under multiple connections in the network. Several issues have been identified. The bandwidth is recognized as the prominent factor reducing the performance of the network. This paper gives an improvement of normal AODV for simultaneous multiple connections under the consideration of bandwidth of node.
Resumo:
For the scientific and commercial utilization of Ocean resources, the role of intelligent underwater robotic systems are of great importance. Scientific activities like Marine Bio-technology, Hydrographic mapping, and commercial applications like Marine mining, Ocean energy, fishing, aquaculture, cable laying and pipe lining are a few utilization of ocean resources. As most of the deep undersea exploration are beyond the reachability of divers and also as the use of operator controlled and teleoperated Remotely Operated Vehicles (ROVs) and Diver Transport Vehicles (DTVs) turn out to be highly inefficient, it is essential to have a fully automated system capable providing stable control and communication links for the unstructured undersea environment.