4 resultados para Atom and Molecular Physics and Optics

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An immense variety of problems in theoretical physics are of the non-linear type. Non~linear partial differential equations (NPDE) have almost become the rule rather than an exception in diverse branches of physics such as fluid mechanics, field theory, particle physics, statistical physics and optics, and the construction of exact solutions of these equations constitutes one of the most vigorous activities in theoretical physics today. The thesis entitled ‘Some Non-linear Problems in Theoretical Physics’ addresses various aspects of this problem at the classical level. For obtaining exact solutions we have used mathematical tools like the bilinear operator method, base equation technique and similarity method with emphasis on its group theoretical aspects. The thesis deals with certain methods of finding exact solutions of a number of non-linear partial differential equations of importance to theoretical physics. Some of these new solutions are of relevance from the applications point of view in diverse branches such as elementary particle physics, field theory, solid state physics and non-linear optics and give some insight into the stable or unstable behavior of dynamical Systems The thesis consists of six chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study described about the interaction of a two level atom and squeezed field with time varying frequency. By applying a sinusoidal variation in the frequency of the field, the randomness in population inversion is reduced and the collapses and periodic revivals are regained. Quantum optics is an emerging field in physics which mainly deals with the interaction of atoms with quantised electromagnetic fields. Jaynes-Cummings Model (JCM) is a key model among them, which describes the interaction between a two level atom and a single mode radiation field. Here the study begins with a brief history of light, atom and their interactions. Also discussed the interaction between atoms and electromagnetic fields. The study suggest a method to manipulate the population inversion due to interaction and control the randomness in it, by applying a time dependence on the frequency of the interacting squeezed field.The change in behaviour of the population inversion due to the presence of a phase factor in the applied frequency variation is explained here.This study also describes the interaction between two level atom and electromagnetic field in nonlinear Kerr medium. It deals with atomic and field state evolution in a coupled cavity system. Our results suggest a new method to control and manipulate the population of states in two level atom radiation interaction,which is very essential for quantum information processing.We have also studied the variation of atomic population inversion with time, when a two level atom interacts with light field, where the light field has a sinusoidal frequency variation with a constant phase. In both coherent field and squeezed field cases, the population inversion variation is completely different from the phase zero frequency modulation case. It is observed that in the presence of a non zero phase φ, the population inversion oscillates sinusoidally.Also the collapses and revivals gradually disappears when φ increases from 0 to π/2. When φ = π/2 the evolution of population inversion is identical to the case when a two level atom interacts with a Fock state. Thus, by applying a phase shifted frequency modulation one can induce sinusoidal oscillations of atomic inversion in linear medium, those normally observed in Kerr medium. We noticed that the entanglement between the atom and field can be controlled by varying the period of the field frequency fluctuations. The system has been solved numerically and the behaviour of it for different initial conditions and different susceptibility values are analysed. It is observed that, for weak cavity coupling the effect of susceptibility is minimal. In cases of strong cavity coupling, susceptibility factor modifies the nature in which the probability oscillates with time. Effect of susceptibility on probability of states is closely related to the initial state of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed, <5 nm for catalytic activity, <20 nm for making a hard magnetic material soft, <50 nm for refractive index changes, and <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement. Conducting polymers have attracted much attention due to high electrical conductivity, ease of preparation, good environmental stability and wide variety of applications in light-emitting, biosensor chemical sensor, separation membrane and electronic devices. The most widely studied conducting polymers are polypyrrole, polyaniline, polythiophene etc. Conducting polymers provide tremendous scope for tuning of their electrical conductivity from semiconducting to metallic region by way of doping and are organic electro chromic materials with chemically active surface. But they are chemically very sensitive and have poor mechanical properties and thus possessing a processibility problem. Nanomaterial shows the presence of more sites for surface reactivity, they possess good mechanical properties and good dispersant too. Thus nanocomposites formed by combining conducting polymers and inorganic oxide nanoparticles possess the good properties of both the constituents and thus enhanced their utility. The properties of such type of nanocomposite are strongly depending on concentration of nanomaterials to be added. Conducting polymer composites is some suitable composition of a conducting polymer with one or more inorganic nanoparticles so that their desirable properties are combined successfully. The composites of core shell metal oxide particles-conducting polymer combine the electrical properties of the polymer shell and the magnetic, optical, electrical or catalytic characteristics of the metal oxide core, which could greatly widen their applicability in the fields of catalysis, electronics and optics. Moreover nanocomposite material composed of conducting polymers & oxides have open more field of application such as drug delivery, conductive paints, rechargeable batteries, toners in photocopying, smart windows, etc.The present work is mainly focussed on the synthesis, characterization and various application studies of conducting polymer modified TiO2 nanocomposites. The conclusions of the present work are outlined below, Mesoporous TiO2 was prepared by the cationic surfactant P123 assisted hydrothermal synthesis route and conducting polymer modified TiO2 nanocomposites were also prepared via the same technique. All the prepared systems show XRD pattern corresponding to anatase phase of TiO2, which means that there is no phase change occurring even after conducting polymer modification. Raman spectroscopy gives supporting evidence for the XRD results. It also confirms the incorporation of the polymer. The mesoporous nature and surface area of the prepared samples were analysed by N2 adsorption desorption studies and the mesoporous ordering can be confirmed by low angle XRD measurementThe morphology of the prepared samples was obtained from both SEM & TEM. The elemental analysis of the samples was performed by EDX analysisThe hybrid composite formation is confirmed by FT-IR spectroscopy and X-ray photoelectron spectroscopyAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systemsAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systems Polyaniline modified TiO2 nanocomposite systems were found to have good antibacterial activity. Thermal diffusivity studies of the polyaniline modified systems were carried out using thermal lens technique. It is observed that as the amount of polyaniline in the composite increases the thermal diffusivity also increases. The prepared systems can be used as an excellent coolant in various industrial purposes. Nonlinear optical properties (3rd order nonlinearity) of the polyaniline modified systems were studied using Z scan technique. The prepared materials can be used for optical limiting Applications. Lasing studies of polyaniline modified TiO2 systems were carried out and the studies reveal that TiO2 - Polyaniline composite is a potential dye laser gain medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe the use of an open cell photoacoustic configuration for the evaluation of the thermal effusivity of liquid crystals. The feasibility, precision and reliability of the method are initially established by measuring the thermal effusivities of water and glycerol, for which the effusivity values are known accurately. In order to demonstrate the use of the present method in the thermal characterization of liquid crystals, we have measured the thermal effusivity values in various mesophases of 4-cyano-4 - octyloxybiphenyl (8OCB) and 4-cyano-4 -heptyloxybiphenyl (7OCB) liquid crystals using a variable temperature open photoacoustic cell. A comparison of the measured values for the two liquid crystals shows that the thermal effusivities of 7OCB in the nematic and isotropic phases are slightly less than those of 8OCB in the corresponding phases