9 resultados para Aryl chloroethylureas
em Cochin University of Science
Resumo:
Vibrational overtone spectra of acetophenone and benzaldehyde in the visible and near-infrared regions are studied by the dual beam thermal lens and the conventional near-infrared absorption techniques. The observed increase in the mechanical frequency of the aryl CH bond from that of benzene is attributed to the decrease in the aryl CH bond length caused by the electron-withdrawing property of the substituents. Overtone spectra also demonstrate that acetophenone contains two types of methyl CH bonds arising from the anisotropic environments created by oxygen lone pair and carbonyl P electrons. The local-mode parameters of the two types of CH bonds are compared with those of acetone and acetaldehyde. The possible factors influencing the methyl CH bonds in acetophenone are discussed.
Resumo:
Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions
Resumo:
The thesis entitled studies on the synthesis and transformations of a few 2(3H)- and 3(2H)- furanones. Furanones represent an interesting class of heterocyclic compounds, which constitute the central ring system of many natural products. The derivatives of furan is divided, depending on their structure 2(3H)-furanones(I), 2(5H)-furanones(II), and 3(2H)-furanones(III). Systems I&II are unsatured gama lactones known as ‘butenolides’. Compounds of this type also known as ‘crotonolactones’ based on the parent crotonic acid. In conclusion a number of 2(3H)-and 3(2H)- furanones were synthesized from dibenzoylalkene precursors and were characterized on the basis of spectral analytical and X-ray data. On direct irradiation 3,3-bis(4-chloropheneyl)-5-aryl-3H-furan -2-ones underwent decarbonylation to yield the corresponding alpha, beta- unsaturated carbonyl compounds and upon sensitized irradiation they underwent dimersation arising through a 2+2 cycloaddition reaction. Our studies on 3(2H)-furanones revealed that these compounds are thermally stable, while they undergo extensive decomposition to intractable mixtures under the influence of light. Similarly, the novel dibenzoylalkenes- type systems containing hetroatomatic rings synthesized by us also underwent extensive decomposition under the influence of heat. Some of the 3(2H)-furanones synthesized by us exhibit remarkable anti-proliferative activity.
Resumo:
Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.
Resumo:
The CH local mode overtone spectrum of benzyl chloride in the visible and NIR regions studied by laser induced thermal lens and conventional NIR absorption is presented. The analysis shows that the −CH2Cl group is symmetrically oriented with respect to the benzene ring, thus finalizing one of the two possible conformational models predicted by electron diffraction studies. The aryl CH bonds have a slightly larger force constant than that in benzene.
Resumo:
Vibrational overtone spectra of styrene (liquid) and polystyrene (solid), studied by the laser-induced thermal lens (for ΔV=6) and the conventional near infrared absorption (for ΔV=3–5) techniques, are reported. For polystyrene, the overtone energy-bond length correlation predicts that the aryl CH bonds are ∼0.0005 Å longer than that in benzene, while no such conclusions could be drawn on styrene. Thesp 3 CH overtones in polystyrene are observed on the low energy side of the aryl CH overtones.
Resumo:
The synthesis and reactions of simple derivatives of 2(3H)- and 3(2H)furanones have attracted considerable attention in recent years, primarily in connection with development of routes to antitumor agents that contain this ring as central structural unit. They also serve as useful synthetic building blocks for lactones and furans and are the precursors of a wide variety of biologically important heterocyclic systems. Although a number of syntheses of furanones were known they were in many cases limited to specific substitution pattems. The development of altemative strategies for the preparation of these heterocycles is therefore of considerable importance or continues to be a challenge.We propose to develop new and general approaches to the synthesis of furanone ring systems from simple and readily available starting materials since we were interested in examining their rich photochemistry. The photochemical reactivity of Beta,gama-unsaturated lactams and lactones is a subject of current interest. Some of the prominent photoreaction pathways of unsaturated lactones include decarbonylation, solvent addition to double bonds, decarboxylation, migration of aryl substituents and dimerisation. lt was reported earlier that the critical requirement for clean photochemical cleavage of the acyl-oxygen bond is the presence ofa double bond adjacent to the ether oxygen and 2(3H)-furanones possessing this structural requirement undergo facile decarbonylation. But related phenanthrofuranones are isolated as photostable end products upon irradiation. Hence we propose to synthesis a few phenanthro-2(3H)-furanones to study the effect of a radical stabilising group at 3-position of furanone ring on photolysis. To explore the tripletmediated transformations of 2(3H)-furanones in polar and nonpolar solvents a few 3,3-bis(4-chlorophenyl)-5-aryl-3H-furan-2-ones and 3,3-di(p-tolyl)-5-aryl- 3H-furan-2-ones were synthesised from the corresponding dibenzoylstyrene precursors by neat thermolysis. Our aim was to study the nature of intermediates involved in these transformations.We also explored the possibility of developing a new and general approach to the synthesis of 3(2H)-furanones from simple and readily available starting materials since such general procedures are not available. The protocol developed by us employs readily available phenanthrenequinone and various 4-substituted acetophenones as starting materials and provides easy access to the required 3(2H)-furanone targets. These furanone derivatives have immense potential for further investigations .We also aimed the synthesis of a few dibenzoylalkene-type systems such as acenaphthenone-2—ylidene ketones and phenanthrenone-9-ylidene ketones. These systems were expected to undergo thermal rearrangement to give furanones and spirofuranones. Also these systems can be categorised as quinonemethides which are valuable synthetic intermediates.
Resumo:
Poly(amidoamine) dendrimers were synthesized on cross-linked aminomethyl polystyrene. Palladium complexes of supported dendrimers prepared by ligand exchange method were reduced to dendrimernanoparticle conjugates supported on polystyrene resin. The supported nanoparticles were used as heterogeneous catalysts for the Suzuki coupling between aryl boronic acids and aryl halides. Various factors affecting the catalysts performance were studied. Higher generation dendrimers gave well-defined nanoparticles without agglomeration and these particles showed good catalytic performance
Resumo:
Burgess reagent first prepared by E. M. Burgess in 1968, is a mild and selective dehydrating agent for secondary and tertiary alcohols and due to the amphipolar nature it is gainfully employed in a number of creative synthetic ventures. A close examination of the structure of Burgess reagent reveals that it can act as a 1,2-dipole. To the best of our knowledge, no attempts have been made to tap full synthetic potential of the amphipolar nature of this reagent and no reports on 1,3-dipolar addition to a σ-bond in acyclic systems are available in literature. In this context, we propose to unravel novel applications of Burgess reagent based on its amphipolar nature. Rich and multifaceted chemistry of nitrones form the basis of many successful chemical transformations used in attractive synthetic strategies. For the last 50 years special attention has been given to nitrones due to their successful application as building blocks in the synthesis of various natural and biologically active compounds. Our interest in nitrones stems out of its unique character: i.e. it is a 1,3-dipole exhibiting distinct nucleophilic activity. We reasoned that 1,3-dipole possessing significant nucleophilicity should react with amphipolar Burgess reagent with elimination of triethylamine to give the corresponding five-membered ring product by formal dipolar addition to a σ bond. To test this hypothesis we studied the reaction of nitrones with Burgess reagent. This thesis reveals our attempts to explore the [3+2] annulation reaction of nitrones with Burgess reagent which was found to be followed by a rearrangementinvolving C-to-N aryl migration, ultimately resulting in diarylamines and carbamates. We have also examined the reaction of cyanuric chloride with nitrones in DMF with a view to exploit the nucleophilicty of nitrones and to unravel the migratory aptitude, if any, observed in this reaction