8 resultados para Aqueous two-phase micellar systems
em Cochin University of Science
Resumo:
It has been shown recently that systems driven with random pulses show the signature of chaos ,even without non linear dynamics.This shows that the relation between randomness and chaos is much closer than it was understood earlier .The effect of random perturbations on synchronization can be also different. In some cases identical random perturbations acting on two different chaotic systems induce synchronizations. However most commonly ,the effect of random fluctuations on the synchronizations of chaotic system is to destroy synchronization. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. The author tries to unearth yet another manifestation of randomness on chaos and sychroniztion. This thesis is organized into six chapters.
Resumo:
The Young’s modulus and Poisson’s ratio of high-quality silicon nitride films with 800 nm thickness, grown on silicon substrates by low-pressure chemical vapor deposition, were determined by measuring the dispersion of laser-induced surface acoustic waves. The Young’s modulus was also measured by mechanical tuning of commercially available silicon nitride cantilevers, manufactured from the same material, using the tapping mode of a scanning force microscope. For this experiment, an expression for the oscillation frequencies of two-media beam systems is derived. Both methods yield a Young’s modulus of 280–290 GPa for amorphous silicon nitride, which is substantially higher than previously reported (E5146 GPa). For Poisson’s ratio, a value of n 50.20 was obtained. These values are relevant for the determination of the spring constant of the cantilever and the effective tip–sample stiffness
Resumo:
Systems which employ underwater acoustic energy for observation or communication are called sonar systems. The active and passive sonars are the two types of systems used for the detection and localisation of targets in underwater. Active sonar involves the transmission of an acoustic signal which, when reflected from a target, provides the sonar receiver with a basis for the detection and estimation. Passive sonar bases its detection and estimation on sounds which emanate from the target itself--Machinery noise, flow noise, transmission from its own active sonar etc.Electroacoustic transducers are used in sonar systems for the transmission and detection of acoustic energy. The transducer which is used for the transmission of acoustic energy is called projector and the one used for reception is called hydrophone. Since a single transducer is not sufficient enough for long range and directional transmission, a properly distributed array of transducers are to be used [9-11].The need and requirement for spatial processing to generate the most favourable directivity patterns for transducer systems used in underwater applications have already been analysed by several investigators [12-21].The desired directivity pattern can be either generated by the use of suitable focussing techniques or by an array of non-directional sensor elements, whose arrangements, spacing and the mode of excitation provide the required radiation pattern or by the combination of these.While computing that the directivity pattern, it is assumed strength of the elements are unaffected by the the source acoustic pressure at each source. However, in closely packed a r r a y s , the acoustic interaction effects experienced among the elements will modify the behaviour of individual elements and in turn will reduce the acoust ic source leve 1 wi t h respect to the maximum t heoret i cal va 1ue a s well as degrade the beam pa t tern. Th i s ef fect shou 1d be reduced in systems that are intended to generate high acoustic power output and unperturbed beam patterns [2,22-31].The work herein presented includes an approach for designing efficient and well behaved underwater transd~cer arrays, taking into account the acoustic interaction effect experienced among the closely packed multielement arrays.Architectural modifications reducing the interaction effect different radiating apertures.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
Brasses are widely used as constructional materials in marine environment due to their anticorrosive,antifouling and mechanical properties.However, its resistance to corrosion and fouling may vary according to local marine environmental condition and the seasons.The dezincification of brass is one of the forms of selective corrosion which has attracted the attention of researchers for the last two decades.Many of the dezincification mechanistic studies have been performed in noncomplex media and hence their conclusions cannot be extended to esturine water,which is of great significance since brass is extensively used in marine environment.Inhibited α brasses are largely immune to dezincication and the effect of tin and arsenic addition to α/beta brasses is not so reliable in controlling the dezincification. There have been many cases of dezincification in duplex brasses in both freshwater and seawater.Though there is some protection methods such as inhibitors,electro deposition and electro polymerization,there is no reliable method of inhibiting the dezincification of two-phase brass.Organic coatings are effectively used for the protection metals due to their capacity to act a physical barrieer between the metal surface and corrosive environment.Hence,pure epoxy coating is selected for this as it has antocorrosiion effect on brass.The dezincification behaviour of brass of the present study has been highlighted in terms of corrosion rate,weight gain/loss,corrosion current and polarization resistence,open circuit potential,dezincification factor. The marine fouling as biomass on brass was assessed and presented in this thesis, The physicochemical properties of estuarine water were correlated with corrosion behaviour of brass.The deterioration of the brass subjected to the effect of estuarine water was also investigated as a measure of loss in mechanical properties such as tensile strength,yield strength,percntage elongation and percentage reduction in area.To validate dezincification data,visual observation,spot analysis,surface morphology before and after removal of corrosion products and corrosion product analysis were performed.The dezincification behavior of epoxy coated brass of the present study has beenhighlighted in terms of corrosion rate ,weight gain/loss,corrosion current and polarization resistance,open circuit potential.dezincification factor.The marine fouling as biomass on epoxy coated brass subjeted to the effect of estuarine water was also investigated as ameasure of loss in mechanical properties such as tensile strength,percentage elongation and percentage reduction in area.The results of dezincification behavior of brass and epoxy coated brass in Cochin estuary water has been presented and discussed.Attempt has been made to correlate the dezincification behavior of brass with epoxy coated brass.
Resumo:
There are a large number of commercial examples and property advantages of immiscible elastomer blends.73 Blends of natural rubber (NR) and polybutadiene (BR) have shown various advantages including heat stability, improved elasticity and abrasion resistance. Ethylene-propylene-diene-rubber (EPDM) blended with styrene-butadiene rubber (SBR) has shown improvements in ozone and chemical resistance with better compression set properties. Blends of EPDM and nitrile rubber (NBR) have been cited as a compromise for obtaining moderate oil and ozone resistance with improved low temperature properties. Neoprene (CR)/BR blends offer improved low temperature properties and abrasion resistance with better processing characteristics etc. However, in many of the commercial two-phase elastomer blends, segregation of the crosslinking agents, carbon black or antioxidants preferentially into one phase can result in failure to attain optimum properties. Soluble and insoluble compounding ingredients are found to be preferentially concentrated in one phase. The balance of optimum curing of both phases therefore presents a difficult problem. It has been the aim of this study to improve the performance of commercially important elastomer blends such as natural rubber (NR)/styrene-butadiene rubber (SBR) and natural rubber/polybutadiene rubber (BR) by industrially viable procedures
Resumo:
Two-dimensional electronic systems play a crucial role in modern electronics and offer a multitude of opportunities to study the fundamental phenomena at low dimensional physics. A quantum well heterostructure based on polyaniline (P) and iodine doped polyaniline (I) thin films were fabricated using radio frequency plasma polymerization on indium tin oxide coated glass plate. Scanning probe microscopy and scanning electron microscopy studies were employed to study the morphology and roughness of the polymer thin films. Local electronic density of states (LDOS) of the P–I–P heterostructures is probed using scanning tunnelling spectroscopy (STS). A step like LDOS is observed in the P–I–P heterostructure and is attributed to the quantum well confinement of electrons in the polymer heterostructure.
Resumo:
Inhibited α brasses are largely immune to dezincification in most water, but the effect of tin and arsenic addition to α/β brasses is not so reliable or predictable in controlling the problem. There have been many cases of dezincification in duplex brasses in both fresh water and seawater. There is no reliable method of inhibiting the dezincification of two-phase brass despite there are some protection methods such as inhibitors, electro deposition and electro polymerization. Organic coatings are effectively used for the protection of metals due to their capacity to act as a physical barrier between the metal surface and corrosive environment. Hence, epoxy coating on brass was applied and effect of this against dezincification in Cochin estuarine water over a period of one year was studied and reported in this paper