26 resultados para Aquatic animals

em Cochin University of Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alpha glucan phosphorylase plays a very significant role in glycolysis. The inhibition and activation of this enzyme have significant effect on the rate of glycolysis. The rate of glycolysis is also determined by the interconversion between the active 3 and inactive Q forms of phosphorylase by two specific enzymes called phosphorylase phosphatase and phosphorylase kinase. The allosteric properties and interconversion mechanism reported for well—studied animal muscle phosphorylases do not fall under a general pattern. Studies using purified phosphorylase from marine sources are scanty. Detailed studies using specialised tissues from more marine animals are necessary to find the factors that control the properties and activities of the enzyme. This thesis is an attempt in this direction. The thesis deals with a detailed study of the control of the phosphorylase by both allosterism and interconversion between the g and b forms from four different aquatic animals of different habitat. Phosphorylase frm the four different animal muscles were purified either partially or completely and the kinetic and control properties were studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis Entitled Studies on amylolytic bacteria in cochin backwaters.This thesis presents a detailed account of the disribution of amylolytic bacteria in water. sediment. fishes ( Etroplus suratensis and Liza parsia) • prawns ( Penaeus indicus and Metapenaeus dobsoni) and clams ( Sunetta scripta and Meretrix casta) from Cochin backwaters. genera-wise distribution of amylolytic bacteria, ability of selected strains to grow and produce amylase at various physico-chemical conditions. Regulation of amylase synthesis anrt characters of amylases producer by these halophilic bacteria.Amylolytic bacteria are distributed widely in water. sediment. fishes. prawns and clams of Cochin back waters. 53% of the total isolates tested were capable of producing amylase. Maximum number of arnylolytic bacteria were present in Metapenaeus dobsoni. In general, the gut region of aquatic animals harboured more amylolytic bacteria than the gill or surface. These bacteria may help in the digestion of starch present in their food.Presence of ions in the medium was found to be essential for growth and amylase production. It was found that this ionic requirement is not highly specific. Sorlium chloride could be replaced by potassium chloride. or magnesium chloride to some extent I without affecting growth and amylase production. The important function of these ions may be to maintain the osmotic balance between the cells and their environment.All the isolates showed the ability to grow and produce amylase using raw-starches from cassava. plantain and potato .This property suggests their role in the rdegradation of native starches in the environment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existing method of culture were largely based on empirical knowledge. Lacking a scientific basis as such methods did, they were often wasteful and suffered severe limitation. Modern methods of fish and prawn culture based on scientific research, have revolutioned the industry in recent years and not only extended its scope to cover the whole country but led to increased fish and prawn production. An understanding of the biological capability of the water in the perennial and seasonal culture ponds, and the nature and extent of the influence of the abiotic factors on the production of organisms in the primary level of food chain would contribute to effectively implement management measures in the stocking strategies and in the evaluation of economics of production of prawns. It is against this background that the present topic of investigation "Studies on the ecology and production of algae in prawn culture systems” was selected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aquaculture is a form of agriculture that involves the propagation, cultivation and marketing of aquatic plants and animals in a controlled environment (Swann, 1992). After growing steadily, particularly in the last four decades, aquaculture is for the first time set to contribute half of the fish consumed by the human population worldwide. Given the projected population growth over the next two decades, it is estimated that at least an additional 40 million tonnes of aquatic food will be required by 2030 to maintain the current per capita consumption (FAO, 2006). Capture fisheries and aquaculture supplied the world with about 110 million tonnes of food fish in 2006. Of this total, aquaculture accounted for 47 percent (FAO, 2009). Globally, penaeid shrimp culture ranks sixth in terms of quantity and second in terms of value amongst all taxonomic groups of aquatic animals cultivated (FAO, 2006). In places where warm-water aquaculture was possible black tiger shrimp, Penaeus monodon became the preferred variety of shrimp cultivar owing to its fast growth, seed availability and importantly due to high prices it fetches (Pechmanee, 1997). World shrimp production is dominated by P.monodon, which accounted for more than 50 % of the production in 1999 (FAO, 2000). In the last few years the whiteleg shrimp, Litopenaeus vannamei, has replaced P.monodon in many countries. Indian shrimp culture is dominated by P.monodon with the East Coast accounting for 70% of the production (Hein, 2002). Intensive culture, apart from other problems, results in enhanced susceptibility of the cultured species to diseases (Jory, 1997), which in fact have become the biggest constraint in shrimp aquaculture (FAO, 2003).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary habitat of Salmonella is the gastrointestinal tract of animals and they are discharged into the water bodies through the feces. Aquatic animals act as asymptomatic reservoirs of a wide range of Salmonella serotypes. The inevitable delay in the detection of Salmonella contamination and the low sensitivity of the conventional methods is a serious issue in the seafood industry. Due to the indiscriminate use, the antibiotics are finally accumulated in the aquatic environment which provides the required antibiotic stress for the emergence of more and more antibiotic resistant phenotypes ofSalmonella. Several genetic determinants like integrons, genomic islands etc. play their role in acquisition and reshuffling of antibiotic resistance genes. A large number of virulence determinants are required for Salmonella pathogenicity. The virulence potential of Salmonella is determined, to some extent, by the presence of phages or phage mediated genes in the bacterial genome. There is much intra-serotype polymorphism in Salmonella and epidemiological studies rely on genetic resemblance of the isolated strains. Proper identification of the strain employing the traditional and molecular techniques is a prerequisite for accurate epidemiological studies (Soto et al., 2000). In this context, a study was undertaken to determine the prevalence of different Salmonella serotypes in seafood and to characterize them

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present investigation, three important stressors: cadmium ion (Cd++), salinity and temperature were selected to study their effects on protein and purine catabolism of O. mossambicus. Cadmium (Cd) is a biologically nonessential metal that can be toxic to aquatic animals. Cadmium is a trace element which is a common constituent of industrial effluents. It is a non-nutrient metal and toxic to fish even at low concentrations. Cadmium ions accumulate in sensitive organs like gills, liver, and kidney of fish in an unregulated manner . Thus; the toxic effects of cadmium are related to changes in natural physiological and biochemical processes in organism. The mechanics of osmoregulation (i.e. total solute and water regulation) are reasonably well understood (Evans, 1984, 1993), and most researchers agree that salinities that differ from the internal osmotic concentration of the fish must impose energetic regulatory costs for active ion transport. There is limited information on protein and purine catabolism of euryhaline fish during salinity adaptation. Within a range of non-lethal temperatures, fishes are generally able to cope with gradual temperature changes that are common in natural systems. However, rapid increases or decreases in ambient temperature may result in sub lethal physiological and behavioral responses. The catabolic pathways of proteins and purines are important biochemical processes. The results obtained signifies that O. mossambicus when exposed to different levels of cadmium ion, salinity and temperature show great variation in the catabolism of proteins and purines. The organism is trying to attain homeostasis in the presence of stressors by increasing or decreasing the activity of certain enzymes. The present study revealed that the protein and purine catabolism in O. mossambicus is sensitive to environmental stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a modest attempt in assessing the trace metal levels and their behavior in the aquatic environment of Kuttanad, an aquatic system that is severely affected by man’s intervention on natural processes, by study seriously evaluating the levels of trace metals in dissolved and particulate phases and also in the different chemical fractions of the sediments. Understanding of the distributions, variations and transfer processes of trace metals in different environmental phases in the backwaters of Kuttanad is vital for the assessment of the water pollution problems and study the ecology of the area which contributes 20% of the rice production in the State of Kerala. Kuttand is a low-lying, shallow bay formed as a result of geological uplift. The major economic activity is agriculture involving 40% of the population. About 1.5% of the people are engaged in aquaculture. The trace metal distribution in the Kuttand backwaters is considerably influenced by the tropical features of the location and by human activities including agricultural activities and construction of salinity barrier. In this study an attempt is made to differentiate the metals in the sediment into exchangeable, reducible and resistant fractions in the sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation is dedicated to understanding various mechanisms of salinity tolerance in the estuarine clam V. cyprinoides var. cochinensis. Even though V. cyprinoids var. cochinensis and V. cyprinoides are found to coexist in the same area, V. cyprinoids is reported to tolerate higher salinities than variety cochinenesis. Variations in the salinity of sea water may affect the aquatic organisms through specific gravity control and variations in osmotic pressure. The specific gravity of most soft tissues is close to that of normal seawater. Many bottom living forms, both attached and motile, have very high specific gravities eg.villorita cyprinoids. Villorita spp. Occurs abundantly in the reaches of the estuary and backwaters of Kerala. In both marine and estuarine forms, it is observed that mantle employs a lesser quantity of amino acids compared to adductor and foot. The regulation of cell volume is not carried out equally in all types of tissues. The capability of salinity tolerance is an aggregate of both the capabilities of extra cellular anisosmotic and intracellular isosmotic regulations in osmoconforming animals. The ultimate aim of water regulation is to regulate the cell volume.T here are slight changes occur in cell volume even in osmoregulators. These studies can also help in revealing the changes brought about in the cellular organelles like lysosomes, which were found to have a role in the osmoregulatory process. The osmoregulatory machinery of estuarine animals is more streamlined for a successful life in the estuarine regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algal blooms are naturally occurring phenomena in the aquatic environment. These blooms cause mass mortalities of wild and farmed fish and shellfish, human intoxications which sometimes result in death, alteration of marine trophic structure through adverse effects on larvae and other life history stages of commercially important species and death of marine animals. Occurrences of harmful algal blooms and associated mortality have been reported along the coastal waters of India since the early period of the last century. The present study was taken up to study the dynamics of major phytoplankton blooms, which occur along the Kerala coast. The results of quantitative and qualitative analysis of phytoplankton in the coastal waters of Vizhinjam and Chombala, their species diversity and community structure is presented and the major algal blooms recorded along the coast of Kerala during the study period is described and their occurrence is related to the hydrographic and meteorological variations. There is a clear evident from these works in the Indian region that the fishes avoid areas where these harmful algae bloom, either due to the toxicity or due to some irritant property of the chemicals secreted by the algae. Taxonomic diversity studies indicated a change in the community structure of commercial finfishes, crustaceans and molluscs due to the bloom of C.marina and funnel plots indicated the deviation in taxonomic distinctness during the bloom period from theoretical mean for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxicity of effluent from a titanium dioxide factory containing sulphuric acid residue with soluble iron metallic salts and insoluble material such as silica, etc. on fishes, decapods and molluscs was studied. The effluent caused changes in pH and oxygen depletion of the sea water. Sublethal effects of the precipitate of ferrous salts were also studied. Dilutions of effluent up to 1:150 were LC100 for all organisms used while 1:200 dilution was LC50 for fishes at 36 hr and for other organisms at 48 hr. But death of organisms at this concentration was caused by pH changes and oxygen depletion and did not account for the effects of the precipitate. Below this level precipitation started soon after mixing with sea water causing death of organisms by choking their gills and siphons. Dilutions,< 1:1000 were 96 hr LCO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faculty of Marine Sciences, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faculty of Marine Sciences, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is an investigation to address relevant chemical aspects of the three varied aquatic environments, such as mangroves, river and the estuary. The sampling locations include a thick mangrove forest with high tidal activity, a mangrove nursery with minimal disturbances and low tidal inundation, a highly polluted riverine system and an estuarine site, as reference. Nutrients and bioorganic compounds in the water column and surface sediment were estimated in an attempt to understand the regeneration properties of these different aquatic systems.Assessment of the trace metal pollution was also carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world demand for fish and fishery products is increasing steadily and it is generally accepted that it will not be possible to meet the heavy demand with resources exploited from capture fishery alone. Now aquaculture is well established and fastdeveloping industry in many countries and is a major focus sector for development. During recent decades, aquaculture has gained momentum, throughout the world especially in developing countries. According to Food and Agricultural Oganisation (FAO, 2000), global aquaculture production was 26.38 tones in 1996 have reached 32.9 million tonnes during 1999. Only marine aquaculture sector has contributed 13.1 million tonnes during 1999.India is a major fish producing country. About one half of lndia’s brackish water lands are currently being utilized for farming in order to reduce the gap between supply and demand for fish. Aquaculture has become a major source of livelihood for people and its role in integrated rural development, generation of employment and earning foreign exchange, thereby alleviating poverty is being greatly appreciated around the world.Among the infectious agents, bacteria are becoming the prime causal organisms for diseases in food fishes and other marine animals. Sindermann, (1970) reported that bacterial fish pathogen most commonly found among marine fishes is species of Pseudomonas, Vibrio and Mycobacterium. These can be categorized into primary pathogens; secondary invaders that may cause systemic disease in immunocompromised hosts; and normal marine flora which are not pathogenic but may occur on body surfaces or even within the tissues of the host. I-Iigh density of animals in hatchery tanks and ponds is conducive to the spread of pathogen and the aquatic environment with regular application of protein rich feed, is ideal for culturing bacteria. Bacteria, which are normally present in seawater or on the surface of fish, can invade and cause pathological effects in fishes, which are injured or subjected to other environmental stresses.Mycobacteria except parasites are known as nontuberculosis mycobacteria (NTM), atypical mycobacteria or mycobacteria other than tuberculosis(MO'l'l"). This group of mycobacteria includes opportunistic pathogens and saprophytes. Environmental mycobacteria are ubiquitous in distribution and the sources may include soil, water, warm-blooded as well as cold-blooded animals. Disease caused by environmental mycobacterial strains in susceptible humans (Goslee & Wolinsky, 1976; Grange, 1987), animals and fishes are increasingly attracting attention. Greatest importance of environmental mycobacteria is believed to be their role in immunological priming of humans and animals, thereby modifying their immune responses to subsequent exposure to pathogenic species.