4 resultados para Applications Software
em Cochin University of Science
Resumo:
Analog-to digital Converters (ADC) have an important impact on the overall performance of signal processing system. This research is to explore efficient techniques for the design of sigma-delta ADC,specially for multi-standard wireless tranceivers. In particular, the aim is to develop novel models and algorithms to address this problem and to implement software tools which are avle to assist the designer's decisions in the system-level exploration phase. To this end, this thesis presents a framework of techniques to design sigma-delta analog to digital converters.A2-2-2 reconfigurable sigma-delta modulator is proposed which can meet the design specifications of the three wireless communication standards namely GSM,WCDMA and WLAN. A sigma-delta modulator design tool is developed using the Graphical User Interface Development Environment (GUIDE) In MATLAB.Genetic Algorithm(GA) based search method is introduced to find the optimum value of the scaling coefficients and to maximize the dynamic range in a sigma-delta modulator.
Resumo:
One of the fastest expanding areas of computer exploitation is in embedded systems, whose prime function is not that of computing, but which nevertheless require information processing in order to carry out their prime function. Advances in hardware technology have made multi microprocessor systems a viable alternative to uniprocessor systems in many embedded application areas. This thesis reports the results of investigations carried out on multi microprocessors oriented towards embedded applications, with a view to enhancing throughput and reliability. An ideal controller for multiprocessor operation is developed which would smoothen sharing of routines and enable more powerful and efficient code I data interchange. Results of performance evaluation are appended.A typical application scenario is presented, which calls for classifying tasks based on characteristic features that were identified. The different classes are introduced along with a partitioned storage scheme. Theoretical analysis is also given. A review of schemes available for reducing disc access time is carried out and a new scheme presented. This is found to speed up data base transactions in embedded systems. The significance of software maintenance and adaptation in such applications is highlighted. A novel scheme of prov1d1ng a maintenance folio to system firmware is presented, alongwith experimental results. Processing reliability can be enhanced if facility exists to check if a particular instruction in a stream is appropriate. Likelihood of occurrence of a particular instruction would be more prudent if number of instructions in the set is less. A new organisation is derived to form the basement for further work. Some early results that would help steer the course of the work are presented.
Resumo:
The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals
Resumo:
The assessment of maturity of software is an important area in the general software sector. The field of OSS also applies various models to measure software maturity. However, measuring maturity of OSS being used for several applications in libraries is an area left with no research so far. This study has attempted to fill the research gap. Measuring maturity of software contributes knowledge on its sustainability over the long term. Maturity of software is one of the factors that positively influence adoption. The investigator measured the maturity of DSpace software using Woods and Guliani‟s Open Source Maturity Model-2005. The present study is significant as it addresses the aspects of maturity of OSS for libraries and fills the research gap on the area. In this sense the study opens new avenues to the field of library and information science by providing an additional tool for librarians in the selection and adoption of OSS. Measuring maturity brings in-depth knowledge on an OSS which will contribute towards the perceived usefulness and perceived ease of use as explained in the Technology Acceptance Model theory.