7 resultados para Apoptotic neutrophils

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled Neuronal degeneration in streptozotocin induced diabetic rats: effect of aegle marmelose and pyridoxine in pancreatic B cell proliferation and neuronal survival. Diabetes mellitus, a chronic metabolic disorder results in neurological dysfunctions and structural changes in the CNS. Antioxidant therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. Our results showed regional variation and imbalance in the expression pattern of dopaminergic receptor subtypes in diabetes and its role in imbalanced insulin signaling and glucose regulation. Disrupted dopaminergic signaling and increased hyperglycemic stress in diabetes contributed to the neuronal loss. Neuronal loss in diabetic rats mediated through the expression of pattern of GLUT-3, CREB, IGF-1, Akt-1, NF,B, second messengers- cAMP, cGMP, IP3 and activation of apoptotic factors factors- TNF-a,caspase-8. Disrupted dopaminergic receptor expressions and its signaling in pancreas contributed defective insulin secretion in diabetes. Activation of apoptotic factors- TNF- a,caspase-8 and defective functioning of neuronal survival factors, disrupted second messenger signaling modulated neuronal viability in diabetes. Hyperglycemic stress activated the expression of TNF-a,caspase-8, BAX and differential expression of anti oxidant enzymes- SOD and GPx in liver lead to apoptosis. Treatment of diabetic rats with insulin, Aegle marmelose and pyridoxine significantly reversed the altered dopaminergic neurotransmission, GLUT3, GLUT2, IGF-1 and second messenger signaling. Antihyperglycemic and antioxidant activity of Aegle marmelose and pyridoxine enhanced pancreatic B cell proliferation, increased insulin synthesis and secretion in diabetic rats. Thus our results conclude the neuroprotective and regenerating ability of Aegle marmelose and pyridoxine which in turn has a novel therapeutic role in the management of diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study deals with the Cholinergic Receptor subtypes functional regulation in spinal cord injured monoplegic rats: Effect of 5-HT GABA and bone marrow cells.Spinal cord injury causes permanent and irrevocable motor deficits and neurodegeneration. Disruption of the spinal cord leads to diminished transmission of descending control from the brain to motor neurons and ascending sensory information. Behavioural studies showed deficits in motor control and coordination in SCI rats. Cholinergic system plays an important role in SCI, the evaluation of which provides valuable insight on the underlying mechanisms of motor deficit that occur during SCI. The cholinergic transmission was studied by assessing the muscarinic and nicotinic receptors; cholinergic enzymes- ChAT and AChE; second messenger enzyme PLC; transcription factor CREB and second messengers - IP3, cAMP and cGMP. We observed a decrease in the cholinergic transmission in the brain and spinal cord of SCI rats. The disrupted cholinergic system is the indicative of motor deficit and neuronal degeneration in the spinal cord and brain regions. SCI mediated oxidative stress and apoptosis leads to neuronal degeneration in SCI rats. The decreased expression of anti oxidant enzymes – SOD, GPx and neuronal cell survival factors - BDNF, GDNF, IGF-1, Akt and cyclin D2 along with increased expression of apoptotic factors – Bax, caspase-8, TNFa and NF-kB augmented the neuronal degeneration in SCI condition. BMC administration in combination with 5-HT and GABA in SCI rats showed a reversal in the impaired cholinergic neurotransmission and reduced the oxidative stress and apoptosis. It also enhanced the expression of cell survival factors in the spinal cord region. In SCI rats treated with 5-HT and GABA, the transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the spinal cord. Neurotrophic factors and anti-apoptotic elements in SCI rats treated with 5-HT and GABA along with BMC rendered neuroprotective effects accompanied by improvement in behavioural deficits. This resulted in a significant reversal of altered cholinergic neurotransmission in SCI. The restorative and neuro protective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of SCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the SNpc resulting in severe motor impairments. Serotonergic system plays an important regulatory role in the pathophysiology of PD in rats, the evaluation of which provides valuable insight on the underlying mechanisms of motor, cognitive and memory deficits in PD. We observed a decrease in 5-HT content in the brain regions of 6-OHDA infused rat compared to control. The decreased 5-HT content resulted in a decrease of total 5-HT, 5-HT2A receptors and 5-HTT function and an increase of 5-HT2C receptor function. 5-HT receptor subtypes - 5-HT2A and 5-HT2C receptors have differential regulatory role on the modulation of DA neurotransmission in different brain regions during PD. Our observation of impaired serotonergic neurotransmission in SNpc, corpus striatum, cerebral cortex, hippocampus, cerebellum and brain stem demonstrate that although PD primarily results from neurodegeneration in the SNpc, the associated neurochemical changes in other areas of the brain significantly contributes to the different motor and non motor symptoms of PD. The antioxidant enzymes – SOD, CAT and GPx showed significant down regulation which indicates increased oxidative damage resulting in neurodegeneration. We also observed an increase in the level of lipid peroxidation. Reduced expression of anti-apoptotic Akt and enhanced expression of NF-B resulting from oxidative stress caused an activation of caspase-8 thus leading the cells to neurodegeneration by apoptosis. BMC administration in combination with 5-HT and GABA to PD rats showed reversal of the impaired serotonergic neurotransmission and oxidative stress mediated apoptosis. The transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the SNpc along with an increase in DA content and an enhanced expression of TH. Neurotrophic factors – BDNF and GDNF rendered neuroprotective effects accompanied by improvement in behavioural deficits indicating a significant reversal of altered dopaminergic and serotonergic neurotransmission in PD. The restorative and neuroprotective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The onset of spontaneous seizures triggers a cascade of molecular and cellular events that eventually leads to neuronal injury and cognitive decline. The present study investigated the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring behavioural deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. The subdued performance in behavioural tests shows impaired motor coordination and memory. Histopathological investigations revealed significant neuronal loss in hippocampus of epileptic rats indicating glutamate mediated excitotoxicity. The treatment with WS and WA restored behavioural deficit and ameliorated neuronal loss. An altered redox homeostasis leading to oxidative stress is a hallmark of TLE. The antioxidant potential was afflicted in epileptic rats, evident from altered activity of SOD and CAT, down regulation of SOD and GPX expression and enhanced lipid peroxidation. The antioxidant property of WS and WA restored altered antioxidant capacity. Alteration in GDH activity and down regulation of GLAST expression resulted in enhanced glutamate content in the brain regions. The metabolism of glutamate was altered in the form of down regulated GAD expression. The alteration in synthesis, transport and metabolism resulted in further increase of the glutamate concentration at the synapse leading to glutamate mediated excitotoxicity. The decreased NMDA and AMPA receptor binding and down regulated NMDA R1, NMDA 2B and AMPA (GluR2) mRNA expression indicated altered glutamergic receptor function. The treatment with WS and WA reversed altered glutamergic receptor function, synthesis, transport and metabolism. The enhanced levels of second messenger IP3 responsible for Ca2+ mediated toxicity was reversed after treatment with WS and WA. Neurotoxics concentration of glutamate resulted in up regulation of pro apoptotic factors Bax and Caspase 8 and down regulation of anti apoptotic factor Akt resulting in neuronal death. The treatment with WS and WA resulted in activation of Akt and down regulation of Bax and caspase 8 leading to blocking of apoptotic pathway. The treatment with WS and WA resulted in reduced seizure frequency and amelioration of associated alterations suggesting the therapeutic role of Withania somnifera in temporal lobe epilepsy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we studied the potential of Bacopa monnieri and Bacoside A treatment to enhance the antioxidant system and support the neuronal survival in the hypoglycemic neonatal brain. For achieving the aim, DAD1 and DAD2 receptors functional regulation, gene expression of growth factors, neuronal survival and apoptotic factors during insulin induced hypoglycemic neonatal brain in rats were studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the initial phase was directed to confirm the effects of curcumin and vitamin D3 in preventing or delaying diabetes onset by studying the blood glucose and insulin levels in the pre-treated and diabetic groups. Behavioural studies were conducted to evaluate the cognitive and motor function in experimental rats. The major focus of the study was to understand the cellular and neuronal mechanisms that ensure the prophylactic capability of curcumin and vitamin D3. To elucidate the mechanisms involved in conferring the antidiabetogenesis effect, we examined the DNA and protein profiles using radioactive incorporation studies for DNA synthesis, DNA methylation and protein synthesis. Furthermore the gene expression studies of Akt-1, Pax, Pdx-1, Neuro D1, insulin like growth factor-1 and NF-κB were done to monitor pancreatic beta cell proliferation and differentiation. The antioxidant and antiapoptotic actions of curcumin and vitamin D3 were examined by studying the expression of antioxidant enzymes - SOD and GPx, and apoptotic mediators like Bax, caspase 3, caspase 8 and TNF-α. In order to understand the signalling pathways involved in curcumin and vitamin D3 action, the second messengers, cAMP, cGMP and IP3 were studied along with the expression of vitamin D receptor in the pancreas. The neuronal regulation of pancreatic beta cell maintenance, proliferation and insulin release was studied by assessing the adrenergic and muscarinic receptor functional regulation in the pancreas, brain stem, hippocampus and hypothalamus. The receptor number and binding affinity of total muscarinic, muscarinic M1, muscarinic M3, total adrenergic, α adrenergic and β adrenergic receptor subtypes were studied in pancreas, brain stem and hippocampus of experimental rats. The mRNA expression of muscarinic and adrenergic receptor subtypes were determined using Real Time PCR. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results. Cell signalling alterations in the pancreas and brain regions associated with diabetogenesis and antidiabetogenesis were assessed by examining the gene expression profiles of vitamin D receptor, CREB, phospholipase C, insulin receptor and GLUT. This study will establish the anti-diabetogenesis activity of curcumin and vitamin D3 pre-treatment and will attempt to understand the cellular, molecular and neuronal control mechanism in the onset of diabetes.Administration of MLD-STZ to curcumin and vitamin D3 pre-treated rats induced only an incidental prediabetic condition. Curcumin and vitamin D3 pretreated groups injected with MLD-STZ exhibited improved circulating insulin levels and behavioural responses when compared to MLD-STZ induced diabetic group. Activation of beta cell compensatory response induces an increase in pancreatic insulin output and beta cell mass expansion in the pre-treated group. Cell signalling proteins that regulate pancreatic beta cell survival, insulin release, proliferation and differentiation showed a significant increase in curcumin and vitamin D3 pre-treated rats. Marked decline in α2 adrenergic receptor function in pancreas helps to relent sympathetic inhibition of insulin release. Neuronal stimulation of hyperglycemia induced beta cell compensatory response is mediated by escalated signalling through β adrenergic, muscarinic M1 and M3 receptors. Pre-treatment mediated functional regulation of adrenergic and cholinergic receptors, key cell signalling proteins and second messengers improves pancreatic glucose sensing, insulin gene expression, insulin secretion, cell survival and beta cell mass expansion in pancreas. Curcumin and vitamin D3 pre-treatment induced modulation of adrenergic and cholinergic signalling in brain stem, hippocampus and hypothalamus promotes insulin secretion, beta cell compensatory response, insulin sensitivity and energy balance to resist diabetogenesis. Pre-treatment improved second messenger levels and the gene expression of intracellular signalling molecules in brain stem, hippocampus and hypothalamus, to retain a functional neuronal response to hyperglycemia. Curcumin and vitamin D3 protect pancreas and brain regions from oxidative stress by their indigenous antioxidant properties and by their ability to stimulate cellular free radical defence system. The present study demonstrates the role of adrenergic and muscarinic receptor subtypes functional regulation in curcumin and vitamin D3 mediated anti-diabetogenesis. This will have immense clinical significance in developing effective strategies to delay or prevent the onset of diabetes.