6 resultados para Antibiogram
em Cochin University of Science
Resumo:
The thesis deals with the prevalence and distribution of motile aeromonads in selected ornamental fishes. The presence of motile aeromonads in ornamental fishes and associated carriage water is well documented. Though aeromonads are a part of autochthonous flora of natural waters, disease outbreak occurs as a result of environmental stress on the cultured species and virulence of the pathogens. While ornamental aquaculture in many parts of the world is highly organized and practiced scientifically, it is highly unorganized in India. The culture ponds/tanks are often maintained in very poor manner and the fishes are subjected to high degree of stress during transportation from the production facility to retail vendors. The situation is no better at retail outlets, where fishes are maintained in crowded condition without proper aeration or food. All these could result in high prevalence of diseases caused by motile aeromonads. No systematic study has been carried out to understand the prevalence of motile aeromonads in ornamental fishes and carriage water . It also gives an account of the production of extracellular virulence factors and the antibiogram of the different species of motile aeromonads isolated. The growth characteristics and virulence potential of a representative strain of Aeromonas hydrophila is also studied. The nucleotide sequencing of the strain was carried out and sequences deposited in Genbank. Survival and immune response of Cyprinus carpio under different stress conditions and on probiotic treatment with Bacillus NL110, when challenged with A. hydrophila is also dealt within this thesis.
Resumo:
The thesis entitled "Studies on the eco-physiology of heterotrophic and indicator bacteria in the marine environments of Kerala" embodies the results of an investigation carried out by the candidate at the Central Marine Fisheries Research Institute, Cochin. It is presentedd under 4 chapters in two parts (Parts A & B) and includes 6 sections. The material for the study was collected in the Cochin backwater during April 1972 to February. 1973, March 1974 to February 1975, July 1975 to June 1976 and in the ishore area during January to October, 1978 and an account of the heterotropic and indicator bacteria are given with intensity charts and tables. Samples from all the stations contained significant quantities of heterotrophs (Part A, Section I) and faecal pollution indicators (Section II). Maximum number of heterotrophic bacteria was observed during the postmonsoon period. The total counts betwen one station and the other did not vary as much as the counts between months did. The distribution was characterised by overdispersion. During 1972-73 in all the stations except the fourth the minimum heterotrophs (Total counts) were recorded during the monsoon period. Minimum counts were observed during the premonsoon period, with an increasing trend from the premonsoon to postmonsoon seasons. Maximum counts were recorded during monsoon months during 1974-75. No significant difference was noted in the total plate count between stations, months and regions. Seasonal variations in sea water was meagre during 1975-76, whereas in sediments variations were prominent during monsoon in Station I - near the mouth of the sewage effluent of Cochin City and in postmonsoon at Station II in the Mattancherry Channel and Station III near barmouth
Resumo:
This study aimed at detecting the prevalence of antibiotic-resistant serotypes of Escherichia coli in Cochin estuary, India. E. coli strains were isolated during the period January 2010–December 2011 from five different stations set at Cochin estuary. Water samples from five different stations in Cochin estuary were collected on a monthly basis for a period of two years. Isolates were serotyped, antibiogram-phenotyped for twelve antimicrobial agents, and genotyped by polymerase chain reaction for uid gene that codes for β-D-glucuronidase. These E. coli strains from Cochin estuary were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance among them. The results revealed that more than 53.33% of the isolates were multiple antibiotic resistant. Thirteen isolates showed resistance to sulphonamides and two of them contained the sul 1 gene. Class 1 integrons were detected in two E. coli strains which were resistant to more than seven antibiotics. In the present study, O serotyping, antibiotic sensitivity, and polymerase chain reaction were employed with the purpose of establishing the present distribution of multiple antibiotic-resistant serotypes, associated with E. coli isolated from different parts of Cochin estuary.
Resumo:
The objective of the present study was to assess the prevalence of various motile aeromonads in freshwater ornamental fishes and to elucidate the antibiogram and beta hemolytic activity among the isolates. A total of 120 ornamental fish samples were screened and analyzed for Aeromonas spp. Motile aeromonads were isolated from 37.5% of the ornamental fish samples. Various species of motile aeromonads such as Aeromonas caviae, Aeromonas hydrophila, Aeromonas jandaei, Aeromonas schubertii, Aeromonas sobria, Aeromonas trota and Aeromonas veronii were detected. All the isolates were sensitive to ceftazidime, chloramphenicol, ciprofloxacin and gentamicin. Multiple antibiotic resistance was observed in 58% of the isolates.
Resumo:
During last decades there has been a continuous growth of aquaculture industries all over the world and taking into consideration the spurt in freshwater ornamental fish aquaculture and trade in Kerala, the present study was aimed to assess the prevalence of various motile Aeromonas spp. in fresh water ornamental fishes and associated carriage water. The extracellular virulence factors and the antibiogram of the isolates were also elucidated. Various species of motile aeromonads such as Aeromonas caviae, A. hydrophila, A. jandaei, A. schubertii, A. sobria, A. trota and A. veronii were detected. Aeromonas sobria predominated both fish and water samples. Extracellular enzymes and toxins produced by motile aeromonds are important elements of bacterial virulence. The production of extracellular virulence factors - proteases, lipase, DNase and haemolysin by the isolates were studied. All the isolates from both fish and water samples produced gelatinase and nuclease but the ability to produce lipase, caseinase and haemolysins was found to vary among isolates from different sources. Among the 15 antibiotics to which the isolates were tested, all the isolates were found to be sensitive to chloramphenicol, ciprofloxacin and gentamicin and resistant to amoxycillin. Local aquarists maintain the fish in crowded stressful conditions, which could trigger infections by the obligate/ opportunistic pathogenic members among motile aeromonads
Characterization and Pathogenicity of Vibrio cholerae and Vibrio vulnificus from Marine environments
Resumo:
The genus Vibrioof the family Vibrionaceae are Gram negative, oxidasepositive, rod- or curved- rodshaped facultative anaerobes, widespread in marine and estuarine environments. Vibrio species are opportunistic human pathogens responsible for diarrhoeal disease, gastroenteritis, septicaemia and wound infections and are also pathogens of aquatic organisms, causing infections to crustaceans, bivalves and fishes. In the present study, marine environmental samples like seafood and water and sediment samples from aquafarms and mangroves were screened for the presence of Vibrio species. Of the134 isolates obtained from the various samples, 45 were segregated to the genus Vibrio on the basis of phenotypic characterization.like Gram staining, oxidase test, MoF test and salinity tolerance. Partial 16S rDNA sequence analysis was utilized for species level identification of the isolates and the strains were identified as V. cholerae(N=21), V. vulnificus(N=18), V. parahaemolyticus(N=3), V. alginolyticus (N=2) and V. azureus (N=1). The genetic relatedness and variations among the 45 Vibrio isolates were elucidated based on 16S rDNA sequences. Phenotypic characterization of the isolates was based on their response to 12 biochemical tests namely Voges-Proskauers’s (VP test), arginine dihydrolase , tolerance to 3% NaCl test, ONPG test that detects β-galactosidase activity, and tests for utilization of citrate, ornithine, mannitol, arabinose, sucrose, glucose, salicin and cellobiose. The isolates exhibited diverse biochemical patterns, some specific for the species and others indicative of their environmental source.Antibiogram for the isolates was determined subsequent to testing their susceptibility to 12 antibiotics by the disc diffusion method. Varying degrees of resistance to gentamycin (2.22%), ampicillin(62.22%), nalidixic acid (4.44%), vancomycin (86.66), cefixime (17.77%), rifampicin (20%), tetracycline (42.22%) and chloramphenicol (2.22%) was exhibited. All the isolates were susceptible to streptomycin, co-trimoxazole, trimethoprim and azithromycin. Isolates from all the three marine environments exhibited multiple antibiotic resistance, with high MAR index value. The molecular typing methods such as ERIC PCR and BOX PCR revealed intraspecies relatedness and genetic heterogeneity within the environmental isolatesof V. cholerae and V. vulnificus. The 21 strains of V. choleraewere serogroupedas non O1/ non O139 by screening for the presence O1rfb and O139 rfb marker genes by PCR. The virulence/virulence associated genes namely ctxA, ctxB, ace, VPI, hlyA, ompU, rtxA, toxR, zot, nagst, tcpA, nin and nanwere screened in V. cholerae and V. vulnificusstrains.The V. vulnificusstrains were also screened for three species specific genes viz., cps, vvhand viu. In V. cholerae strains, the virulence associated genes like VPI, hlyA, rtxA, ompU and toxR were confirmed by PCR. All the isolates, except for strain BTOS6, harbored at least one or a combination of the tested genes and V. choleraestrain BTPR5 isolated from prawn hosted the highest number of virulence associated genes. Among the V. vulnificusstrains, only 3 virulence genes, VPI, toxR and cps, were confirmed out of the 16 tested and only 7 of the isolates had these genes in one or more combinations. Strain BTPS6 from aquafarm and strain BTVE4 from mangrove samples yielded positive amplification for the three genes. The toxRgene from 9 strains of V. choleraeand 3 strains of V. vulnificus were cloned and sequenced for phylogenetic analysis based on nucleotide and the amino acid sequences. Multiple sequence alignment of the nucleotide sequences and amino acid sequences of the environmental strains of V. choleraerevealed that the toxRgene in the environmental strains are 100% homologous to themselves and to the V. choleraetoxR gene sequence available in the Genbank database. The 3 strains of V. vulnificus displayed high nucleotide and amino acid sequence similarity among themselves and to the sequences of V. cholerae and V. harveyi obtained from the GenBank database, but exhibited only 72% homology to the sequences of its close relative V. vulnificus. Structure prediction of the ToxR protein of Vibrio cholerae strain BTMA5 was by PHYRE2 software. The deduced amino acid sequence showed maximum resemblance with the structure of DNA-binding domain of response regulator2 from Escherichia coli k-12 Template based homology modelling in PHYRE2 successfully modelled the predicted protein and its secondary structure based on protein data bank (PDB) template c3zq7A. The pathogenicity studies were performed using the nematode Caenorhabditiselegansas a model system. The assessment of pathogenicity of environmental strain of V. choleraewas conducted with E. coli strain OP50 as the food source in control plates, environmental V. cholerae strain BTOS6, negative for all tested virulence genes, to check for the suitability of Vibrio sp. as a food source for the nematode;V. cholerae Co 366 ElTor, a clinical pathogenic strain and V. cholerae strain BTPR5 from seafood (Prawn) and positive for the tested virulence genes like VPI, hlyA, ompU,rtxA and toxR. It was found that V. cholerae strain BTOS6 could serve as a food source in place of E. coli strain OP50 but behavioral aberrations like sluggish movement and lawn avoidance and morphological abnormalities like pharyngeal and intestinal distensions and bagging were exhibited by the worms fed on V. cholerae Co 366 ElTor strain and environmental BTPR5 indicating their pathogenicity to the nematode. Assessment of pathogenicity of the environmental strains of V. vulnificus was performed with V. vulnificus strain BTPS6 which tested positive for 3 virulence genes, namely, cps, toxRand VPI, and V. vulnificus strain BTMM7 that did not possess any of the tested virulence genes. A reduction was observed in the life span of worms fed on environmental strain of V. vulnificusBTMM7 rather than on the ordinary laboratory food source, E. coli OP50. Behavioral abnormalities like sluggish movement, lawn avoidance and bagging were also observed in the worms fed with strain BTPS6, but the pharynx and the intestine were intact. The presence of multi drug resistant environmental Vibrio strainsthat constitute a major reservoir of diverse virulence genes are to be dealt with caution as they play a decisive role in pathogenicity and horizontal gene transfer in the marine environments.