5 resultados para Android,Peer to Peer,Wifi,Mesh Network
em Cochin University of Science
Resumo:
In this paper we investigate the problem of cache resolution in a mobile peer to peer ad hoc network. In our vision cache resolution should satisfy the following requirements: (i) it should result in low message overhead and (ii) the information should be retrieved with minimum delay. In this paper, we show that these goals can be achieved by splitting the one hop neighbours in to two sets based on the transmission range. The proposed approach reduces the number of messages flooded in to the network to find the requested data. This scheme is fully distributed and comes at very low cost in terms of cache overhead. The experimental results gives a promising result based on the metrics of studies.
Resumo:
MicroRNAs are short non-coding RNAs that can regulate gene expression during various crucial cell processes such as differentiation, proliferation and apoptosis. Changes in expression profiles of miRNA play an important role in the development of many cancers, including CRC. Therefore, the identification of cancer related miRNAs and their target genes are important for cancer biology research. In this paper, we applied TSK-type recurrent neural fuzzy network (TRNFN) to infer miRNA–mRNA association network from paired miRNA, mRNA expression profiles of CRC patients. We demonstrated that the method we proposed achieved good performance in recovering known experimentally verified miRNA–mRNA associations. Moreover, our approach proved successful in identifying 17 validated cancer miRNAs which are directly involved in the CRC related pathways. Targeting such miRNAs may help not only to prevent the recurrence of disease but also to control the growth of advanced metastatic tumors. Our regulatory modules provide valuable insights into the pathogenesis of cancer
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year
Resumo:
Coordination among supply chain members is essential for better supply chain performance. An effective method to improve supply chain coordination is to implement proper coordination mechanisms. The primary objective of this research is to study the performance of a multi-level supply chain while using selected coordination mechanisms separately, and in combination, under lost sale and back order cases. The coordination mechanisms used in this study are price discount, delay in payment and different types of information sharing. Mathematical modelling and simulation modelling are used in this study to analyse the performance of the supply chain using these mechanisms. Initially, a three level supply chain consisting of a supplier, a manufacturer and a retailer has been used to study the combined effect of price discount and delay in payment on the performance (profit) of supply chain using mathematical modelling. This study showed that implementation of individual mechanisms improves the performance of the supply chain compared to ‘no coordination’. When more than one mechanism is used in combination, performance in most cases further improved. The three level supply chain considered in mathematical modelling was then extended to a three level network supply chain consisting of a four retailers, two wholesalers, and a manufacturer with an infinite part supplier. The performance of this network supply chain was analysed under both lost sale and backorder cases using simulation modelling with the same mechanisms: ‘price discount and delay in payment’ used in mathematical modelling. This study also showed that the performance of the supply chain is significantly improved while using combination of mechanisms as obtained earlier. In this study, it is found that the effect (increase in profit) of ‘delay in payment’ and combination of ‘price discount’ & ‘delay in payment’ on SC profit is relatively high in the case of lost sale. Sensitivity analysis showed that order cost of the retailer plays a major role in the performance of the supply chain as it decides the order quantity of the other players in the supply chain in this study. Sensitivity analysis also showed that there is a proportional change in supply chain profit with change in rate of return of any player. In the case of price discount, elasticity of demand is an important factor to improve the performance of the supply chain. It is also found that the change in permissible delay in payment given by the seller to the buyer affects the SC profit more than the delay in payment availed by the buyer from the seller. In continuation of the above, a study on the performance of a four level supply chain consisting of a manufacturer, a wholesaler, a distributor and a retailer with ‘information sharing’ as coordination mechanism, under lost sale and backorder cases, using a simulation game with live players has been conducted. In this study, best performance is obtained in the case of sharing ‘demand and supply chain performance’ compared to other seven types of information sharing including traditional method. This study also revealed that effect of information sharing on supply chain performance is relatively high in the case of lost sale than backorder. The in depth analysis in this part of the study showed that lack of information sharing need not always be resulting in bullwhip effect. Instead of bullwhip effect, lack of information sharing produced a huge hike in lost sales cost or backorder cost in this study which is also not favorable for the supply chain. Overall analysis provided the extent of improvement in supply chain performance under different cases. Sensitivity analysis revealed useful insights about the decision variables of supply chain and it will be useful for the supply chain management practitioners to take appropriate decisions.