6 resultados para Anchoring heuristic
em Cochin University of Science
Resumo:
The thesis deals with the synthesis, characterization and catalytic activity studies of supported cobalt(ii), nickel(II) and copper(II) complexes of O-phenylenediamine and Schiff bases derived from 3-hydroxyquinoxaline -2-carboxaldehyde. Zeolite encapsulation and polymer anchoring was employed for supporting the complexes. The characterization techniques proved that the encapsulation as well as polymer supporting has been successfully achieved. The catalytic activity studies revealed that the activities of the simple complexes are improved upon encapsulation. Various characterization techniques are used such as, chemical analysis, EPR, magnetic measurements, FTIR studies, thermal analysis, electronic spectra, XRD, SEM, surface area, and GC.The present study indicated that the that the mechanism of oxidation of catechol and DTBC by hydrogen peroxide is not altered by the change in the coordination sphere around the metal ion due to encapsulation. This fact suggests outer sphere mechanism for the reactions. The catalytic activity by zeolite encapsulated complex was found to be slower than that by the neat complex. The slowing down of the reaction in the zeolite case is probably due to the constraint imposed by the zeolite framework. The rate of DTBC ( 3,5-di-tert-butylchatechol)oxidation was found to be greater than the rate of catechol oxidation. This is obviously due to the presence of electron donating tertiary butyl groups.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
Biodegradable polymers have opened an emerging area of great interest because they are the ultimate solution for the disposal problems of synthetic polymers used for short time applications in the environmental and biomedical field. The biodegradable polymers available until recently have a number of limitations in terms of strength and dimensional stability. Most of them have processing problems and are also very expensive. Recent developments in biodegradable polymers show that monomers and polymers obtained from renewable resources are important owing to their inherent biodegradability, biocompatibility and easy availability. The present study is, therefore, mostly concemed with the utilization of renewable resources by effecting chemical modification/copolymerization on existing synthetic polymers/natural polymers for introducing better biodegradability and material properties.The thesis describes multiple approaches in the design of new biodegradable polymers: (1) Chemical modification of an existing nonbiodegradable polymer, polyethylene, by anchoring monosaccharides after functionalization to introduce biodegradability. (2) Copolymerization of an existing biodegradable polymer, polylactide, with suitable monomers and/or polymers to tailor their properties to suit the emerging requirements such as (2a) graft copolymerization of lactide onto chitosan to get controlled solvation and biodegradability and (2b) copolymerization of polylactide with cycloaliphatic amide segments to improve upon the thermal properties and processability.
Resumo:
Motivation for Speaker recognition work is presented in the first part of the thesis. An exhaustive survey of past work in this field is also presented. A low cost system not including complex computation has been chosen for implementation. Towards achieving this a PC based system is designed and developed. A front end analog to digital convertor (12 bit) is built and interfaced to a PC. Software to control the ADC and to perform various analytical functions including feature vector evaluation is developed. It is shown that a fixed set of phrases incorporating evenly balanced phonemes is aptly suited for the speaker recognition work at hand. A set of phrases are chosen for recognition. Two new methods are adopted for the feature evaluation. Some new measurements involving a symmetry check method for pitch period detection and ACE‘ are used as featured. Arguments are provided to show the need for a new model for speech production. Starting from heuristic, a knowledge based (KB) speech production model is presented. In this model, a KB provides impulses to a voice producing mechanism and constant correction is applied via a feedback path. It is this correction that differs from speaker to speaker. Methods of defining measurable parameters for use as features are described. Algorithms for speaker recognition are developed and implemented. Two methods are presented. The first is based on the model postulated. Here the entropy on the utterance of a phoneme is evaluated. The transitions of voiced regions are used as speaker dependent features. The second method presented uses features found in other works, but evaluated differently. A knock—out scheme is used to provide the weightage values for the selection of features. Results of implementation are presented which show on an average of 80% recognition. It is also shown that if there are long gaps between sessions, the performance deteriorates and is speaker dependent. Cross recognition percentages are also presented and this in the worst case rises to 30% while the best case is 0%. Suggestions for further work are given in the concluding chapter.
Resumo:
Unit Commitment Problem (UCP) in power system refers to the problem of determining the on/ off status of generating units that minimize the operating cost during a given time horizon. Since various system and generation constraints are to be satisfied while finding the optimum schedule, UCP turns to be a constrained optimization problem in power system scheduling. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision making task and an efficient Reinforcement Learning solution is formulated considering minimum up time /down time constraints. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
Unit commitment is an optimization task in electric power generation control sector. It involves scheduling the ON/OFF status of the generating units to meet the load demand with minimum generation cost satisfying the different constraints existing in the system. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision task and Reinforcement Learning solution is formulated through one efficient exploration strategy: Pursuit method. The correctness and efficiency of the developed solutions are verified for standard test systems