5 resultados para Analysis of principal component

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report time resolved study of C2 emission from laser produced carbon plasma in presence of ambient helium gas. The 1.06µm: radiation from a Nd:YAG laser was focused onto a graphite target where it·produced a transient plasma. We observed double peak structure in the time profile of C2 species. The twin peaks were observed only after a threshold laser fluence. It is proposed that the faster velocity component in the temporal profiles originates mainly due to recombination processes. The laser fluence and ambient gas dependence of the double peak intensity distribution is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis entitled Reliability Modelling and Analysis in Discrete time Some Concepts and Models Useful in the Analysis of discrete life time data.The present study consists of five chapters. In Chapter II we take up the derivation of some general results useful in reliability modelling that involves two component mixtures. Expression for the failure rate, mean residual life and second moment of residual life of the mixture distributions in terms of the corresponding quantities in the component distributions are investigated. Some applications of these results are also pointed out. The role of the geometric,Waring and negative hypergeometric distributions as models of life lengths in the discrete time domain has been discussed already. While describing various reliability characteristics, it was found that they can be often considered as a class. The applicability of these models in single populations naturally extends to the case of populations composed of sub-populations making mixtures of these distributions worth investigating. Accordingly the general properties, various reliability characteristics and characterizations of these models are discussed in chapter III. Inference of parameters in mixture distribution is usually a difficult problem because the mass function of the mixture is a linear function of the component masses that makes manipulation of the likelihood equations, leastsquare function etc and the resulting computations.very difficult. We show that one of our characterizations help in inferring the parameters of the geometric mixture without involving computational hazards. As mentioned in the review of results in the previous sections, partial moments were not studied extensively in literature especially in the case of discrete distributions. Chapters IV and V deal with descending and ascending partial factorial moments. Apart from studying their properties, we prove characterizations of distributions by functional forms of partial moments and establish recurrence relations between successive moments for some well known families. It is further demonstrated that partial moments are equally efficient and convenient compared to many of the conventional tools to resolve practical problems in reliability modelling and analysis. The study concludes by indicating some new problems that surfaced during the course of the present investigation which could be the subject for a future work in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis begins with a review of basic elements of general theory of relativity (GTR) which forms the basis for the theoretical interpretation of the observations in cosmology. The first chapter also discusses the standard model in cosmology, namely the Friedmann model, its predictions and problems. We have also made a brief discussion on fractals and inflation of the early universe in the first chapter. In the second chapter we discuss the formulation of a new approach to cosmology namely a stochastic approach. In this model, the dynam ics of the early universe is described by a set of non-deterministic, Langevin type equations and we derive the solutions using the Fokker—Planck formalism. Here we demonstrate how the problems with the standard model, can be eliminated by introducing the idea of stochastic fluctuations in the early universe. Many recent observations indicate that the present universe may be approximated by a many component fluid and we assume that only the total energy density is conserved. This, in turn, leads to energy transfer between different components of the cosmic fluid and fluctuations in such energy transfer can certainly induce fluctuations in the mean to factor in the equation of state p = wp, resulting in a fluctuating expansion rate for the universe. The third chapter discusses the stochastic evolution of the cosmological parameters in the early universe, using the new approach. The penultimate chapter is about the refinements to be made in the present model, by means of a new deterministic model The concluding chapter presents a discussion on other problems with the conventional cosmology, like fractal correlation of galactic distribution. The author attempts an explanation for this problem using the stochastic approach.