1 resultado para American Stock Exchange.
em Cochin University of Science
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (17)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (36)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (18)
- Center for Jewish History Digital Collections (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (21)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Diposit Digital de la UB - Universidade de Barcelona (10)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (28)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (67)
- Indian Institute of Science - Bangalore - Índia (92)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (16)
- Queensland University of Technology - ePrints Archive (210)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (48)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (18)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (11)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (9)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Metodista de São Paulo (10)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (3)
- University of Michigan (45)
- University of Queensland eSpace - Australia (9)
- WestminsterResearch - UK (2)
Resumo:
The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.