17 resultados para Almond husk
em Cochin University of Science
Resumo:
Rice husk silica was utilized as the promoter of ceria for preparing supported vanadia catalysts. Effect of vanadium content was investigated with 2–10 wt.% V2O5 loading over the support. Structural characterization of the catalysts was done by various techniques like energy dispersive X-ray (EDX), X-ray diffraction (XRD), BET surface area, thermal analysis (TGA/DTA), FT-infrared spectroscopy (FT-IR), UV–vis diffused reflectance spectroscopy (DR UV–vis), electron paramagnetic spectroscopy (EPR) and solid state magnetic resonance spectroscopies (29Si and 51V MASNMR). Catalytic activity was studied towards liquid-phase oxidation of benzene. Surface area of ceria enhanced upon rice husk silica promotion, thus makes dispersion of the active sites of vanadia easier. Highly dispersed vanadia was found for low V2O5 loading and formation of cerium orthovanadate (CeVO4) occurs as the loading increases. Spectroscopic investigation clearly confirms the formation of CeVO4 phase at higher loadings of V2O5. The oxidation activity increases with vanadia loading up to 8 wt.% V2O5, and further increase reduces the conversion rate. Selective formation of phenol can be attributed to the presence of highly dispersed active sites of vanadia over the support.
Resumo:
Cyclohexanol decomposition activity of supported vanadia catalysts is ascribed to the high surface area, total acidity and interaction between supported vanadia and the amorphous support. Among the supported catalysts, the effect of vanadia over various wt% V2O5 (2–10) loading indicates that the catalyst comprising of 6 wt% V2O5 exhibits higher acidity and decomposition activity. Structural characterization of the catalysts has been done by techniques like energy dispersive X-ray analysis, X-ray diffraction and BET surface area. Acidity of the catalysts has been measured by temperature programmed desorption using ammonia as a probe molecule and the results have been correlated with the activity of catalysts.
Resumo:
The selective oxidation of alkylaromatics is one of the main processes since the reaction products are important as intermediates in numerous industrial organic chemicals. Side-chain oxidation of alkyl aromatic compounds catalyzed by heterogeneous catalysts using cleaner peroxide oxidants is an especially attractive goal since classical synthetic laboratory procedures preferably use permanganate or acid dichromate as stoichiometric oxidants. In spite of many studies, there are very few which use hydrogen peroxide as a source of oxygen in the C-H activation of alkanes. Eflective utilization of ethylbenzene, available in the xylene stream of the petrochemical industry to more value added products is a promising one in chemical industry. The oxidation products of ethylbenzene are widely employed as intermediates in organic, steroid and resin synthesis.
Resumo:
The extensive backwaters of Kerala are the sites for a flourishing cottage industry - the coir industry. This enterprise almost exclusively located along the 590 km coastal belt of Kerala, provides direct employment to over half a million people in the state and produces nearly 90% of the total coir goods in the world. The shallow bays and lagoons of the 30 backwater systems of the state are traditional areas for the retting of coconut husk for the production of the coir fibre. The paper examines the environmental status of the retting grounds in Kerala, in relation to the biotic communities. The study revealed that retting activity has caused large scale organic pollution along with the mass destruction of the flora and fauna, converting sizeable sections of the backwaters into virtual cesspools of foul smelling stagnant waters. High values of hydrogen sulphide, ammonia, BOD5 associated with anoxic conditions and low community diversity of plankton, benthic fauna, fish, shell fish, wood boring and fouling organisms were the outstanding feature of the retting zones.
Resumo:
Various factors determine the applicability of rice husk ash (RHA) as a pozzolanic material. The amount and accessibility of reactive sites is thought to be a key factor. A structural study of RHA samples in relation to their reactivity has been performed; Silica in RHA formed by burning rice husk in a laboratory furnace under continuous supply of air have been characterized as a function of incineration temperature, time and cooling regime. The characterization methods included chemical analyses, conductivity measurements, microscopic analysis, X-ray diffraction (XRD) and 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR). In line with earlier observations, the analyses show that the highest amounts of amorphous silica occur in samples burnt in the range of 500 °C–700 °C. The 29Si NMR data allow direct identification of the reactive silanol sites in the RHA samples. De-convolution of the NMR spectra clearly shows that the quickly cooled RHA resulting from burning rice husk for 12 h at 500 °C has the highest amount of silanol groups. This sample also induced the largest drop in conductivity when added to a saturated calcium hydroxide solution giving an indication of its reactivity towards lime. Therefore, this RHA is the favorable sample to be used as pozzolanic cement additive
Resumo:
This paper discusses the properties of rice husk ash samples produced from different types of field ovens to compare the performance of the ovens and to identify the most feasible method to produce a reactive pozzolana as an alternative to cement for building applications requiring lower strengths. Different types of ashes are produced and long-term strength of rice husk ash pozzolanas with lime or cement is investigated to suggest a sustainable affordable option in rural building applications, especially for rural housing in Kerala, a southern state of India
Resumo:
High strength and high performance concrete are being widely used all over the world. Most of the applications of high strength concrete have been found in high rise buildings, long span bridges etc. The potential of rice husk ash as a cement replacement material is well established .Earlier researches showed an improvement in mechanical properties of high strength concrete with finely ground RHA as a partial cement replacement material. A review of literature urges the need for optimizing the replacement level of cement with RHA for improved mechanical properties at optimum water binder ratio. This paper discusses the mechanical properties of RHA- High strength concrete at optimized conditions
Resumo:
This paper presents the results of a study on the use of rice husk ash (RHA) for property modification of high density polyethylene (HDPE). Rice husk is a waste product of the rice processing industry. It is used widely as a fuel which results in large quantities of RHA. Here, the characterization of RHA has been done with the help of X-ray diffraction (XRD), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), light scattering based particle size analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Most reports suggest that RHA when blended directly with polymers without polar groups does not improve the properties of the polymer substantially. In this study RHA is blended with HDPE in the presence of a compatibilizer. The compatibilized HDPE-RHA blend has a tensile strength about 18% higher than that of virgin HDPE. The elongation-at-break is also higher for the compatibilized blend. TGA studies reveal that uncompatibilized as well as compatibilized HDPERHA composites have excellent thermal stability. The results prove that RHA is a valuable reinforcing material for HDPE and the environmental pollution arising from RHA can be eliminated in a profitable way by this technique.
Resumo:
School of environmental studies, Cochin University of Science and Technology
Resumo:
School of Environmental Studies, Cochin University of Science and Technology
Resumo:
Considerable number of factories and related establishments forming an industrial complex are located in the upper reaches of the estuary from Varapuzha about 10km from cochin barmouth to Alwaye while lower down are the retting grounds at Vaduthala and nearby places at about 5km from the barmouth. Muncipal wastes from the city population of over 5 lakhs effluents and solid waste from several fish processing factories and other land washings around Willington island reach the estuary move near its lower reaches close to the barmouth. Cochin estuary is the biggest in the state providing water front for the largest number of industries from the small retting grounds of Vaduthala to the huge fertilizer factories of Udyogamandal and receiving the highest quantity of town sewage and land drainage. The estuary contributes itself as nursery ground for shrimps and related fishery as well. Study of this estuary therefore contributes to a typical environment as regards to pollution problems in the tropics and hence the scope of the present investigation
Resumo:
The thesis consists of seven chapters. The first chapter is a general introduction on rice by-products, their composition and utilization at present. The different milling processes adopted in paddy and the major by-products obtained from these processes viz. rice husk, rice bran, rice bran oil and rice husk ash are described. The physical properties and chemical composition of the rice husk and its general uses are given in detail. The chemical composition of the rice bran and its separation from paddy is also included. The details of solvent extraction process used for obtaining rice bran oil and also its chemical constitution is discussed in this chapter. Also described is the preparation and the different uses of rice husk ash. A literature survey is also done on the utilization of rice by-products in rubber and plastics as on today. The scope and objectives of the present study is also included at the end of this chapter.
Resumo:
Retting.of coconut husk is one of the major problems of pollution in the estuaries (Kayals) of Kerala. This paper discusses the salient features associated with the variation in gross and net primary productivity values in the Kadinarnkularn Kayal based on lortnightlydala from twosclected stations frorn Octobcr1987 to September 1988.The gross primary productivity value in the surface water ranged from 0.06 to 0.29gC/m3/day at Station Iand from 0.06 to 1.49gC/rn3/dayatstation II. In the bottom wateritrangcdfrorn oto 0.21 gC/m2/ day at station I whereas that at station II from 0.03 to 1.41gC/m3j day. The net productivity in the surface water at station I varied from 0 to 024 gC/m Iday Whereas that atstation II varied from 0.02to 1.44gC/m3Iday.AI the bottomwaterilvaried from ato 0.19gC/m3/ day at station I and from 0.01 to 1.21gC/m3/day at station II. The monsoon period showed the highest mean seasonal value at stations I and II. The total depletion of dissolved oxygen giving rise to anoxic condition coupled with the production of large quantities of hydrogen sulphide was found to be detrimental to the gross and net productivity values in the retting zone
Resumo:
The South West (S.W.) coast of India is blessed with a series of wetland systems popularly referred to as backwaters covering a total area of 46128.94 ha. These backwaters are internationally renowned for their aesthetic and scientific values including being a repository for several species fish and shell fishes. This is more significant in that three wetlands (Vembanad, Sasthamcotta and Ashtamudi) have recently been designated as Ramsar sites of international importance. Thirty major backwaters forming the crux of the coastal wetlands form an abode for over 200 resident or migratory fish and shellfish species. The fishing activities in these water bodies provide the livelihood to about 200,000 fishers and also provide full-time employment to over 50,000 fishermen. This paper describes the changes on the environmental and biodiversity status of selected wetlands, during 1994-2005 period. The pH was generally near neutral to alkaline in range. The salinity values indicated mixohaline condition ranging from 5.20-32.38 ppt. in the 12 wetlands. The productivity values were generally low in most of the wetlands during the study, where the gross production varied from 0.22 gC/m3/day in Kadinamkulam to 1.10 gC/m3/day in the Kayamkulam. The diversity of plankton and benthos was more during the pre-monsoon compared to the monsoon and post-monsoon periods in most of the wetlands. The diversity of plankton and benthos was more during the pre-monsoon compared to the monsoon and post-monsoon periods in most of the wetlands. The average fish yield per ha. varied from 246 kg. in Valapattanam to 2747.3 kg. in Azhikode wetland. Retting of coconut husk in most of the wetlands led to acidic pH conditions with anoxia resulting in the production of high amounts of sulphide, coupled with high carbon dioxide values leading to drastic reduction in the incidence and abundance of plankton, benthic fauna and the fishery resources. The major fish species recorded from the investigation were Etroplus suratensis, E. maculatus, Channa marulius, Labeo dussumieri, Puntius sp. Lutianus argentimaculatus, Mystus sp., Tachysurus sp. and Hemiramphus sp. The majority of these backwaters are highly stressed, especially during the pre monsoon period when the retting activity is at its peak. The study has clearly reflected that a more restrained and cautious approach is needed to manage and preserve the unique backwater ecosystems of South-west India
Resumo:
Kerala, God’s own country is blessed with immense natural resources. It’s high time that the state’s natural resources being utilized effectively. While sustainable development is the need of the hour, we have to take lead in initiating activities that would minimize the exploitation of our natural resources resulting in their effective utilization. This paper narrates an overview of innovative building materials especially using natural fibres available in Kerala and discusses the feasibility of utilising such fibres in the context of sustainable building materials in Kerala. The paper also discusses how these materials can be effectively utilized to reduce the huge investment in the construction industry