3 resultados para Airborne H 2O DIAL
em Cochin University of Science
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
The distribution of the holothurian H. KH.) scabra indicated its availability all along coastal areas on Palk Bay from Rameswavam to Mallipattinam and along the Gulf of Hannah coast from Pamban to Ervadi and Tuticmhin,'at 4~2O m depth.The major fishing for holmthurians was done by skin diving at all the centres. The tallu valai was operated at Tuticorin and Vedalai and trawlevs were operated at Rameswaram.The fmod of H. KN.) scabra consists of ovganic matter which contains mud, sand, shell debris, bivalves and algae. Obsehvatinns indicated the species seems to be a n0n—se1ective feeder. The assimilation efficiency from sediment to faeces indicated that the faecal pellets of H. KH.) scabra are semidigested.A multiple relationship was fitted between total length, total weight, gutted weight, gonad weight and maturity stages were found significant.The fishing season for holothurians commences from October to March along Gulf of Manner coast and from March to October along Palk Bay coast.The percentage of catches recorded by skin diving, trawlere and tallu valai were 80.04%, 10.27% and 9.69% respectively. Skin diving contributes to maximum catch.The holothurians landed all along the Gulf of Manner and Palk Bay coasts constitute 25.6% and 74.4% respectively. This showed that Palk Bay coast is more productive.
Resumo:
A Multi-Objective Antenna Placement Genetic Algorithm (MO-APGA) has been proposed for the synthesis of matched antenna arrays on complex platforms. The total number of antennas required, their position on the platform, location of loads, loading circuit parameters, decoupling and matching network topology, matching network parameters and feed network parameters are optimized simultaneously. The optimization goal was to provide a given minimum gain, specific gain discrimination between the main and back lobes and broadband performance. This algorithm is developed based on the non-dominated sorting genetic algorithm (NSGA-II) and Minimum Spanning Tree (MST) technique for producing diverse solutions when the number of objectives is increased beyond two. The proposed method is validated through the design of a wideband airborne SAR