7 resultados para Air turbine power take-off

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pollutants that once enter into the earth’s atmosphere become part of the atmosphere and hence their dispersion, dilution, direction of transportation etc. are governed by the meteorological conditions. The thesis deals with the study of the atmospheric dispersion capacity, wind climatology, atmospheric stability, pollutant distribution by means of a model and the suggestions for a comprehensive planning for the industrially developing city, Cochin. The definition, sources, types and effects of air pollution have been dealt with briefly. The influence of various meteorological parameters such as vector wind, temperature and its vertical structure and atmospheric stability in relation to pollutant dispersal have been studied. The importance of inversions, mixing heights, ventilation coefficients were brought out. The spatial variation of mixing heights studies for the first time on a microscale region, serves to delineate the regions of good and poor dispersal capacity. A study of wind direction fluctuation, σθ and its relation to stability and mixing heights were shown to be much useful. It was shown that there is a necessity to look into the method of σθ computation. The development of Gausssian Plume Model along with the application for multiple sources was presented. The pollutant chosen was sulphur dioxide and industrial sources alone were considered. The percentage frequency of occurrence of inversions and isothermals are found to be low in all months during the year. The spatial variation of mixing heights revealed that a single mixing height cannot be taken as a representative for the whole city have low mixing heights and monsoonal months showed lowest mixing heights. The study of ventilation co-efficients showed values less than the required optimum value 6000m2/5. However, the low values may be due to the consideration of surface wind alone instead of the vertically averaged wind. Relatively more calm conditions and light winds during night and strong winds during day time were observed. During the most of the year westerlies during day time and northeasterlies during night time are the dominant winds. Unstable conditions with high values of σθ during day time and stable conditions with lower values of σθ during night time are the prominent features. Monsoonal months showed neutral stability for most of the time. A study σθ of and Pasquill Stability category has revealed the difficulty in giving a unique value of for each stability category. For the first time regression equations have been developed relating mixing heights and σθ. A closer examination of σθ revealed that half of the range of wind direction fluctuations is to be taken, instead of one by sixth, to compute σθ. The spatial distribution of SO2 showed a more or less uniform distribution with a slight intrusion towards south. Winter months showed low concentrations contrary to the expectations. The variations of the concentration is found to be influenced more by the mixing height and the stack height rather than wind speed. In the densely populated areas the concentration is more than the threshold limit value. However, the values reported appear to be high, because no depletion of the material is assumed through dry or wet depositions and also because of the inclusion of calm conditions with a very light wind speed. A reduction of emission during night time with a consequent rise during day time would bring down the levels of pollution. The probable locations for the new industries could be the extreme southeast parts because the concentration towards the north falls off very quickly resulting low concentrations. In such a case pollutant spread would be towards south and west, thus keeping the city interior relatively free from pollution. A more detailed examination of the pollutant spread by means of models that would take the dry and wet depositions may be necessary. Nevertheless, the present model serves to give the trend of the distribution of pollutant concentration with which one can suggest the optimum locations for the new industries

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laser produced plasma from the multi-component target YBa2CU3O7 was analyzed using Michelson interferometry and time resolved emission spectroscopy. The interaction of 10 ns pulses of 1.06 mum radiation from a Q-switched Nd:YAG laser at laser power densities ranging from 0.55 GW cm-2 to 1.5 GW cm-2 has been studied. Time resolved spectral measurements of the plasma evolution show distinct features at different points in its temporal history. For a time duration of less than 55 ns after the laser pulse (for a typical laser power density of 0.8 GW cm-2, the emission spectrum is dominated by black-body radiation. During cooling after 55 ns the spectral emission consists mainly of neutral and ionic species. Line averaged electron densities were deduced from interferometric line intensity measurements at various laser power densities. Plasma electron densities are of the order of 1017 cm-3 and the plasma temperature at the core region is about 1 eV. The measurement of plasma emission line intensities of various ions inside the plasma gave evidence of multiphoton ionization of the elements constituting the target at low laser power densities. At higher laser power densities the ionization mechanism is collision dominated. For elements such as nitrogen present outside the target, ionization is due to collisions only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy has emerged as a major sustainable source of energy.The efficiency of wind power generation by wind mills has improved a lot during the last three decades.There is still further scope for maximising the conversion of wind energy into mechanical energy.In this context,the wind turbine rotor dynamics has great significance.The present work aims at a comprehensive study of the Horizontal Axis Wind Turbine (HAWT) aerodynamics by numerically solving the fluid dynamic equations with the help of a finite-volume Navier-Stokes CFD solver.As a more general goal,the study aims at providing the capabilities of modern numerical techniques for the complex fluid dynamic problems of HAWT.The main purpose is hence to maximize the physics of power extraction by wind turbines.This research demonstrates the potential of an incompressible Navier-Stokes CFD method for the aerodynamic power performance analysis of horizontal axis wind turbine.The National Renewable Energy Laboratory USA-NREL (Technical Report NREL/Cp-500-28589) had carried out an experimental work aimed at the real time performance prediction of horizontal axis wind turbine.In addition to a comparison between the results reported by NREL made and CFD simulations,comparisons are made for the local flow angle at several stations ahead of the wind turbine blades.The comparison has shown that fairly good predictions can be made for pressure distribution and torque.Subsequently, the wind-field effects on the blade aerodynamics,as well as the blade/tower interaction,were investigated.The selected case corresponded to a 12.5 m/s up-wind HAWT at zero degree of yaw angle and a rotational speed of 25 rpm.The results obtained suggest that the present can cope well with the flows encountered around wind turbines.The areodynamic performance of the turbine and the flow details near and off the turbine blades and tower can be analysed using theses results.The aerodynamic performance of airfoils differs from one another.The performance mainly depends on co-efficient of performnace,co-efficient of lift,co-efficient of drag, velocity of fluid and angle of attack.This study shows that the velocity is not constant for all angles of attack of different airfoils.The performance parameters are calculated analytically and are compared with the standardized performance tests.For different angles of ,the velocity stall is determined for the better performance of a system with respect to velocity.The research addresses the effect of surface roughness factor on the blade surface at various sections.The numerical results were found to be in agreement with the experimental data.A relative advantage of the theoretical aerofoil design method is that it allows many different concepts to be explored economically.Such efforts are generally impractical in wind tunnels because of time and money constraints.Thus, the need for a theoretical aerofoil design method is threefold:first for the design of aerofoil that fall outside the range of applicability of existing calalogs:second,for the design of aerofoil that more exactly match the requirements of the intended application:and third,for the economic exploration of many aerofoil concepts.From the results obtained for the different aerofoils,the velocity is not constant for all angles of attack.The results obtained for the aerofoil mainly depend on angle of attack and velocity.The vortex generator technique was meticulously studies with the formulation of the specification for the right angle shaped vortex generators-VG.The results were validated in accordance with the primary analysis phase.The results were found to be in good agreement with the power curve.The introduction of correct size VGs at appropriate locations over the blades of the selected HAWT was found to increase the power generation by about 4%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data centre is a centralized repository,either physical or virtual,for the storage,management and dissemination of data and information organized around a particular body and nerve centre of the present IT revolution.Data centre are expected to serve uniinterruptedly round the year enabling them to perform their functions,it consumes enormous energy in the present scenario.Tremendous growth in the demand from IT Industry made it customary to develop newer technologies for the better operation of data centre.Energy conservation activities in data centre mainly concentrate on the air conditioning system since it is the major mechanical sub-system which consumes considerable share of the total power consumption of the data centre.The data centre energy matrix is best represented by power utilization efficiency(PUE),which is defined as the ratio of the total facility power to the IT equipment power.Its value will be greater than one and a large value of PUE indicates that the sub-systems draw more power from the facility and the performance of the data will be poor from the stand point of energy conservation. PUE values of 1.4 to 1.6 are acievable by proper design and management techniques.Optimizing the air conditioning systems brings enormous opportunity in bringing down the PUE value.The air conditioning system can be optimized by two approaches namely,thermal management and air flow management.thermal management systems are now introduced by some companies but they are highly sophisticated and costly and do not catch much attention in the thumb rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year