6 resultados para Agriculture Forecasting

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study revealed that southwest monsoon rainfall in Kerala has been declining while increasing in post monsoon season. The annual rainfall exhibits a cyclic trend of 40-60 years, with a significant decline in recent decades. The intensity of climatological droughts was increasing across the State of Kerala through it falls under heavy rainfall zone due to unimodal rainfall pattern. The moisture index across the State of Kerala was moving from B4 to B3 humid, indicating that the State was moving from wetness to dryness within the humid climate.The study confirms that a warming Kerala is real as maximum, minimum and mean temperatures and temperature ranges are increasing. The rate of increase in maximum temperature was high (1.46°C) across the high ranges, followed by the coastal belt (1.09°C) of Kerala while the rate of increase was relatively marginal (0.25°C) across the midlands. The rate of increase in temperature across the high ranges is probably high because of deforestation. It indicates that the highranges and coastal belts in Kerala are vulnerable to global warming and climate change when compared to midlands.Interestingly, the trend in annual rainfall is increasing at Pampadumpara (Idukki), while declining at Ambalavayal across the highranges. In the case of maximum temperature, it was showing increasing trend at Pampadumpara while declining trend at Ambalavayal. In the case of minimum temperature it is declining at Pampadumpara while increasing in Ambalavalal.The paddy productivity in Kerala during kharif / virippu is unlikely to decline due to increasing temperature on the basis of long term climate change, but likely to decline to a considerable extent due to prolonged monsoon season, followed by unusual summer rains as noticed in 2007-08 and 2010-11.All the plantation crops under study are vulnerable to climate variability such as floods and droughts rather than long term changes in temperature and rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation on “Coconut Phenology and Yield Response to Climate Variability and Change” was undertaken at the experimental site, at the Regional Station, Coconut Development Board, KAU Campus, Vellanikkara. Ten palms each of eight-year-old coconut cultivars viz., Tiptur Tall, Kuttiadi (WCT), Kasaragod (WCT) and Komadan (WCT) were randomly selected.The study therefore, reinforces our traditional knowledge that the coconut palm is sensitive to changing weather conditions during the period from primordium initiation to harvest of nuts (about 44 months). Absence of rainfall from December to May due to early withdrawal of northeast monsoon, lack of pre monsoon showers and late onset of southwest monsoon adversely affect the coconut productivity to a considerable extent in the following year under rainfed conditions. The productivity can be increased by irrigating the coconut palm during the dry periods.Increase in temperature, aridity index, number of severe summer droughts and decline in rainfall and moisture index were the major factors for a marginal decline or stagnation in coconut productivity over a period of time, though various developmental schemes were in operation for sustenance of coconut production in the State of Kerala. It can be attributed to global warming and climate change. Therefore, there is a threat to coconut productivity in the ensuing decades due to climate variability and change. In view of the above, there is an urgent need for proactive measures as a part of climate change adaptation to sustain coconut productivity in the State of Kerala.The coconut productivity is more vulnerable to climate variability such as summer droughts rather than climate change in terms of increase in temperature and decline in rainfall, though there was a marginal decrease (1.6%) in the decade of 1981-2009 when compared to that of 1951-80. This aspect needs to be examined in detail by coconut development agencies such as Coconut Development Board and State Agriculture Department for remedial measures. Otherwise, the premier position of Kerala in terms of coconut production is likely to be lost in the ensuing years under the projected climate change scenario. Among the four cultivars studied, Tiptur Tall appears to be superior in terms of reproduction phase and nut yield. This needs to be examined by the coconut breeders in their crop improvement programme as a part of stress tolerant under rainfed conditions. Crop mix and integrated farming are supposed to be the best combination to sustain development in the long run under the projected climate change scenarios. Increase in coconut area under irrigation during summer with better crop management and protection measures also are necessary measures to increase coconut productivity since the frequency of intensity of summer droughts is likely to increase under projected global warming scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vast changes have taken place in the field of institutional rural credit in India since the nationalisation of nineteen commercial banks in 1969. The supply of institutional finance to cultivators amounted to 63.2 percent of the total credit in 1981 compared to 31.2 percent in 1971. Insti tutionalisation of agricultural credit envisaged two objectives in general. One was to emancipate cultivators and farmers from the clutches of indigenous financiers and money lenders. The second was to make farmers financially capable of adopting the new technology or improved practices in agriculture so as to increase their agricultural production and thereby contributing to the development of agriculture in India. Though vast literature on Institutional Credi t and agriculture is available, no indepth and serious work examining thoroughly the cause of credit diversion has been undertaken so far. The present study is an attempt to fill up this gap. The study will be helpful to lending insti tutions, viz. Co-ope:r-atives, Commercial banks and various other insti tutional agencies in connection with their lending activity_ Also, the study will help government in .formulating proper policies that will insure a preferential treatment in favour of the most needy category of farmers and cultivators with respect to agricultural credit disbursement

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NABARD has completed 14 years of operation.ln the light of its experiences and achievements, the performance ev.ilu.ilion of the National Bank need to be looked into.This could provide certain criteria for its strength and weakness which may help in consolidating the institution for better utilisation of its potentialities. It is also noteworthy that no evaluative study on the National Bank has been conducted in Kerala. The Major objective of this study is to evaluate the role of NABARD in catering to the long-term agricultural requirements of Kerala for 1982 to 1992.This is done by analysing the quantum and quality of NABARD's schematic refinance. The qualitative indices like (1) the efficiency of loan recovery, (2) the impact or financial viability of NABARD refinanced schemes, (3) the credit gap, (4) the commitment-disbursement gap, and (5) the imbalances in the NABARD refinance form the core of the study.Hypotheses were formulated inorder to study and analyse these qualitative indices. The study is presented in eight chapters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production Planning and Control (PPC) systems have grown and changed because of the developments in planning tools and models as well as the use of computers and information systems in this area. Though so much is available in research journals, practice of PPC is lagging behind and does not use much from published research. The practices of PPC in SMEs lag behind because of many reasons, which need to be explored This research work deals with the effect of identified variables such as forecasting, planning and control methods adopted, demographics of the key person, standardization practices followed, effect of training, learning and IT usage on firm performance. A model and framework has been developed based on literature. Empirical testing of the model has been done after collecting data using a questionnaire schedule administered among the selected respondents from Small and Medium Enterprises (SMEs) in India. Final data included 382 responses. Hypotheses linking SME performance with the use of forecasting, planning and controlling were formed and tested. Exploratory factor analysis was used for data reduction and for identifying the factor structure. High and low performing firms were classified using a Logistic Regression model. A confirmatory factor analysis was used to study the structural relationship between firm performance and dependent variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries